ﻻ يوجد ملخص باللغة العربية
By Mazurs Torsion Theorem, there are fourteen possibilities for the non-trivial torsion subgroup $T$ of a rational elliptic curve. For each $T$, we consider a parameterized family $E_T$ of elliptic curves with the property that they parameterize all elliptic curves $E/mathbb{Q}$ which contain $T$ in their torsion subgroup. Using these parameterized families, we explicitly classify the N{e}ron type, the conductor exponent, and the local Tamagawa number at each prime $p$ where $E/mathbb{Q}$ has additive reduction. As a consequence, we find all rational elliptic curves with a $2$-torsion or a $3$-torsion point that have global Tamagawa number~$1$.
In this paper, we explicitly classify the minimal discriminants of all elliptic curves $E/mathbb{Q}$ with a non-trivial torsion subgroup. This is done by considering various parameterized families of elliptic curves with the property that they parame
We give a classification of the cuspidal automorphic representations attached to rational elliptic curves with a non-trivial torsion point of odd order. Such elliptic curves are parameterizable, and in this paper, we find the necessary and sufficient
A family $mathcal{F}$ of elliptic curves defined over number fields is said to be typically bounded in torsion if the torsion subgroups $E(F)[$tors$]$ of those elliptic curves $E_{/F}in mathcal{F}$ can be made uniformly bounded after removing from $m
We present rank-record breaking elliptic curves having torsion subgroups Z/2Z, Z/3Z, Z/4Z, Z/6Z, and Z/7Z.
An elliptic curve $E$ over $mathbb{Q}$ is said to be good if $N_{E}^{6}<max!left{ leftvert c_{4}^{3}rightvert ,c_{6}^{2}right} $ where $N_{E}$ is the conductor of $E$ and $c_{4}$ and $c_{6}$ are the invariants associated to a global minimal model of