ترغب بنشر مسار تعليمي؟ اضغط هنا

Constructing elliptic curves over finite fields with prescribed torsion

169   0   0.0 ( 0 )
 نشر من قبل Andrew Sutherland
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for constructing optimized equations for the modular curve X_1(N) using a local search algorithm on a suitably defined graph of birationally equivalent plane curves. We then apply these equations over a finite field F_q to efficiently generate elliptic curves with nontrivial N-torsion by searching for affine points on X_1(N)(F_q), and we give a fast method for generating curves with (or without) a point of order 4N using X_1(2N).



قيم البحث

اقرأ أيضاً

We generalize a construction of families of moderate rank elliptic curves over $mathbb{Q}$ to number fields $K/mathbb{Q}$. The construction, originally due to Steven J. Miller, Alvaro Lozano-Robledo and Scott Arms, invokes a theorem of Rosen and Silv erman to show that computing the rank of these curves can be done by controlling the average of the traces of Frobenius, the construction for number fields proceeds in essentially the same way. One novelty of this method is that we can construct families of moderate rank without having to explicitly determine points and calculating determinants of height matrices.
We prove two theorems concerning isogenies of elliptic curves over function fields. The first one describes the variation of the height of the $j$-invariant in an isogeny class. The second one is an isogeny estimate, providing an explicit bound on th e degree of a minimal isogeny between two isogenous elliptic curves. We also give several corollaries of these two results.
Assuming the Generalized Riemann Hypothesis, we design a deterministic algorithm that, given a prime p and positive integer m=o(sqrt(p)/(log p)^4), outputs an elliptic curve E over the finite field F_p for which the cardinality of E(F_p) is divisible by m. The running time of the algorithm is mp^(1/2+o(1)), and this leads to more efficient constructions of rational functions over F_p whose image is small relative to p. We also give an unconditional version of the algorithm that works for almost all primes p, and give a probabilistic algorithm with subexponential time complexity.
An elliptic curve $E$ over $mathbb{Q}$ is said to be good if $N_{E}^{6}<max!left{ leftvert c_{4}^{3}rightvert ,c_{6}^{2}right} $ where $N_{E}$ is the conductor of $E$ and $c_{4}$ and $c_{6}$ are the invariants associated to a global minimal model of $E$. In this article, we generalize Massers Theorem on the existence of infinitely many good elliptic curves with full $2$-torsion. Specifically, we prove via constructive methods that for each of the fifteen torsion subgroups $T$ allowed by Mazurs Torsion Theorem, there are infinitely many good elliptic curves $E$ with $E!left(mathbb{Q}right) _{text{tors}}cong T$.
92 - Angelos Koutsianas 2015
In this paper we study the problem of how to determine all elliptic curves defined over an arbitrary number field $K$ with good reduction outside a given finite set of primes $S$ of $K$ by solving $S$-unit equations. We give examples of elliptic curves over $mathbb Q$ and quadratic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا