ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the topological interference management (TIM) problem in a dynamic setting, where an adversary perturbs network topology to prevent the exploitation of sophisticated coding opportunities (e.g., interference alignment). Focusing on a special class of network topology - chordal networks - we investigate algorithmic aspects of the TIM problem under adversarial topology perturbation. In particular, given the adversarial perturbation with respect to edge insertion/deletion, we propose a dynamic graph coloring algorithm that allows for a constant number of re-coloring updates against each inserted/deleted edge to achieve the information-theoretic optimality. This is a sharp reduction of the general graph re-coloring, whose optimal number of updates scales as the size of the network, thanks to the delicate exploitation of the structural properties of weakly chordal graphs.
Managing interference in a network of macrocells underlaid with femtocells presents an important, yet challenging problem. A majority of spatial (frequency/time) reuse based approaches partition the users based on coloring the interference graph, whi
Two key traits of 5G cellular networks are much higher base station (BS) densities - especially in the case of low-power BSs - and the use of massive MIMO at these BSs. This paper explores how massive MIMO can be used to jointly maximize the offloadi
We study the problem of interference management in large-scale small cell networks, where each user equipment (UE) needs to determine in a distributed manner when and at what power level it should transmit to its serving small cell base station (SBS)
The problem of joint source-channel coding in transmitting independent sources over interference channels with correlated receiver side information is studied. When each receiver has side information correlated with its own desired source, it is show
We address the problem of finding the capacity of noisy networks with either independent point-to-point compound channels (CC) or arbitrarily varying channels (AVC). These channels model the presence of a Byzantine adversary which controls a subset o