ﻻ يوجد ملخص باللغة العربية
We study the problem of interference management in large-scale small cell networks, where each user equipment (UE) needs to determine in a distributed manner when and at what power level it should transmit to its serving small cell base station (SBS) such that a given network performance criterion is maximized subject to minimum quality of service (QoS) requirements by the UEs. We first propose a distributed algorithm for the UE-SBS pairs to find a subset of weakly interfering UE-SBS pairs, namely the maximal independent sets (MISs) of the interference graph in logarithmic time (with respect to the number of UEs). Then we propose a novel problem formulation which enables UE-SBS pairs to determine the optimal fractions of time occupied by each MIS in a distributed manner. We analytically bound the performance of our distributed policy in terms of the competitive ratio with respect to the optimal network performance, which is obtained in a centralized manner with NP (non-deterministic polynomial time) complexity. Remarkably, the competitive ratio is independent of the network size, which guarantees scalability in terms of performance for arbitrarily large networks. Through simulations, we show that our proposed policies achieve significant performance improvements (from 150% to 700%) over the existing policies.
Managing interference in a network of macrocells underlaid with femtocells presents an important, yet challenging problem. A majority of spatial (frequency/time) reuse based approaches partition the users based on coloring the interference graph, whi
Traditional macro-cell networks are experiencing an upsurge of data traffic, and small-cells are deployed to help offload the traffic from macro-cells. Given the massive deployment of small-cells in a macro-cell, the aggregate power consumption of sm
Recent results establish the optimality of interference alignment to approach the Shannon capacity of interference networks at high SNR. However, the extent to which interference can be aligned over a finite number of signalling dimensions remains un
Mobile users (or UEs, to use 3GPP terminology) served by small cells in dense urban settings may abruptly experience a significant deterioration in their channel to their serving base stations (BSs) in several scenarios, such as after turning a corne
Motivated by the rapid development of energy harvesting technology and content-aware communication in access networks, this paper considers the push mechanism design in small-cell base stations (SBSs) powered by renewable energy. A user request can b