ﻻ يوجد ملخص باللغة العربية
Managing interference in a network of macrocells underlaid with femtocells presents an important, yet challenging problem. A majority of spatial (frequency/time) reuse based approaches partition the users based on coloring the interference graph, which is shown to be suboptimal. Some spatial time reuse based approaches schedule the maximal independent sets (MISs) in a cyclic, (weighted) round-robin fashion, which is inefficient for delay-sensitive applications. Our proposed policies schedule the MISs in a non-cyclic fashion, which aim to optimize any given network performance criterion for delay-sensitive applications while fulfilling minimum throughput requirements of the users. Importantly, we do not take the interference graph as given as in existing works; we propose an optimal construction of the interference graph. We prove that under certain conditions, the proposed policy achieves the optimal network performance. For large networks, we propose a low-complexity algorithm for computing the proposed policy. We show that the policy computed achieves a constant competitive ratio (with respect to the optimal network performance), which is independent of the network size, under wide range of deployment scenarios. The policy can be implemented in a decentralized manner by the users. Compared to the existing policies, our proposed policies can achieve improvement of up to 130 % in large-scale deployments.
We study the problem of interference management in large-scale small cell networks, where each user equipment (UE) needs to determine in a distributed manner when and at what power level it should transmit to its serving small cell base station (SBS)
We study in this paper optimal control strategy for Advanced Sleep Modes (ASM) in 5G networks. ASM correspond to different levels of sleep modes ranging from deactivation of some components of the base station for several micro-seconds to switching o
Wireless power transfer (WPT) is a viable source of energy for wirelessly powered communication networks (WPCNs). In this paper, we first consider WPT from an energy access point (E-AP) to multiple energy receivers (E-Rs) to obtain the optimal policy
In this paper, we consider the topological interference management (TIM) problem in a dynamic setting, where an adversary perturbs network topology to prevent the exploitation of sophisticated coding opportunities (e.g., interference alignment). Focu
A simple line network model is proposed to study the downlink cellular network. Without base station cooperation, the system is interference-limited. The interference limitation is overcome when the base stations are allowed to jointly encode the use