ترغب بنشر مسار تعليمي؟ اضغط هنا

User Association and Interference Management in Massive MIMO HetNets

104   0   0.0 ( 0 )
 نشر من قبل Qiaoyang Ye
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Two key traits of 5G cellular networks are much higher base station (BS) densities - especially in the case of low-power BSs - and the use of massive MIMO at these BSs. This paper explores how massive MIMO can be used to jointly maximize the offloading gains and minimize the interference challenges arising from adding small cells. We consider two interference management approaches: joint transmission (JT) with local precoding, where users are served simultaneously by multiple BSs without requiring channel state information exchanges among cooperating BSs, and resource blanking, where some macro BS resources are left blank to reduce the interference in the small cell downlink. A key advantage offered by massive MIMO is channel hardening, which enables to predict instantaneous rates a priori. This allows us to develop a unified framework, where resource allocation is cast as a network utility maximization (NUM) problem, and to demonstrate large gains in cell-edge rates based on the NUM solution. We propose an efficient dual subgradient based algorithm, which converges towards the NUM solution. A scheduling scheme is also proposed to approach the NUM solution. Simulations illustrate more than 2x rate gain for 10th percentile users vs. an optimal association without interference management.



قيم البحث

اقرأ أيضاً

This paper explores the potential of wireless power transfer (WPT) in massive multiple input multiple output (MIMO) aided heterogeneous networks (HetNets), where massive MIMO is applied in the macrocells, and users aim to harvest as much energy as po ssible and reduce the uplink path loss for enhancing their information transfer. By addressing the impact of massive MIMO on the user association, we compare and analyze two user association schemes. We adopt the linear maximal ratio transmission beam-forming for massive MIMO power transfer to recharge users. By deriving new statistical properties, we obtain the exact and asymptotic expressions for the average harvested energy. Then we derive the average uplink achievable rate under the harvested energy constraint.
This paper exploits the potential of physical layer security in massive multiple-input multiple-output (MIMO) aided two-tier heterogeneous networks (HetNets). We focus on the downlink secure transmission in the presence of multiple eavesdroppers. We first address the impact of massive MIMO on the maximum receive power based user association. We then derive the tractable upper bound expressions for the secrecy outage probability of a HetNets user.We show that the implementation of massive MIMO significantly improves the secrecy performance, which indicates that physical layer security could be a promising solution for safeguarding massive MIMO HetNets. Furthermore, we show that the secrecy outage probability of HetNets user first degrades and then improves with increasing the density of PBSs.
132 - Nikhil Garg , Sarabjot Singh , 2015
Intelligent load balancing is essential to fully realize the benefits of dense heterogeneous networks. Current techniques have largely been studied with single slope path loss models, though multi-slope models are known to more closely match real dep loyments. This paper develops insight into the performance of biasing and uplink/downlink decoupling for user association in HetNets with dual slope path loss models. It is shown that dual slope path loss models change the tradeoffs inherent in biasing and reduce gains from both biasing and uplink/downlink decoupling. The results show that with the dual slope path loss models, the bias maximizing the median rate is not optimal for other users, e.g., edge users. Furthermore, optimal downlink biasing is shown to realize most of the gains from downlink-uplink decoupling. Moreover, the user association gains in dense networks are observed to be quite sensitive to the path loss exponent beyond the critical distance in a dual slope model.
77 - You Chen , Guyue Li , Chen Sun 2020
Physical-layer key generation (PKG) in multi-user massive MIMO networks faces great challenges due to the large length of pilots and the high dimension of channel matrix. To tackle these problems, we propose a novel massive MIMO key generation scheme with pilot reuse based on the beam domain channel model and derive close-form expression of secret key rate. Specifically, we present two algorithms, i.e., beam-domain based channel probing (BCP) algorithm and interference neutralization based multi-user beam allocation (IMBA) algorithm for the purpose of channel dimension reduction and multi-user pilot reuse, respectively. Numerical results verify that the proposed PKG scheme can achieve the secret key rate that approximates the perfect case, and significantly reduce the dimension of the channel estimation and pilot overhead.
The robustness of system throughput with scheduling is a critical issue. In this paper, we analyze the sensitivity of multi-user scheduling performance to channel misreporting in systems with massive antennas. The main result is that for the round-ro bin scheduler combined with max-min power control, the channel magnitude misreporting is harmful to the scheduling performance and has a different impact from the purely physical layer analysis. Specifically, for the homogeneous users that have equal average signal-to-noise ratios (SNRs), underreporting is harmful, while overreporting is beneficial to others. In underreporting, the asymptotic rate loss on others is derived, which is tight when the number of antennas is huge. One interesting observation in our research is that the rate loss periodically increases and decreases as the number of misreporters grows. For the heterogeneous users that have various SNRs, both underreporting and overreporting can degrade the scheduler performance. We observe that strong misreporting changes the user grouping decision and hence greatly decreases some users rates regardless of others gaining rate improvements, while with carefully designed weak misreporting, the scheduling decision keeps fixed and the rate loss on others is shown to grow nearly linearly with the number of misreporters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا