ﻻ يوجد ملخص باللغة العربية
We consider the interaction of solitary waves in a model involving the well-known $phi^4$ Klein-Gordon theory, but now bearing both Laplacian and biharmonic terms with different prefactors. As a result of the competition of the respective linear operators, we obtain three distinct cases as we vary the model parameters. In the first the biharmonic effect dominates, yielding an oscillatory inter-wave interaction; in the third the harmonic effect prevails yielding exponential interactions, while we find an intriguing linearly modulated exponential effect in the critical second case, separating the above two regimes. For each case, we calculate the force between the kink and antikink when initially separated with sufficient distance. Being able to write the acceleration as a function of the separation distance, and its corresponding ordinary differential equation, we test the corresponding predictions, finding very good agreement, where appropriate, with the corresponding partial differential equation results. Where the two findings differ, we explain the source of disparities. Finally, we offer a first glimpse of the interplay of harmonic and biharmonic effects on the results of kink-antikink collisions and the corresponding single- and multi-bounce windows.
Recent studies have emphasized the important role that a shape deformability of scalar-field models pertaining to the same class with the standard $phi^4$ field, can play in controlling the production of a specific type of breathing bound states so-c
Kink-antikink scattering in the $phi^4$ model is investigated in the limit when the static inter-soliton force vanishes. We observe the formation of spectral walls and, further, identify a new phenomenon, the vacuum wall, whose existence gives rise t
We study kink-antikink scattering in a one-parameter variant of the $phi^4$ theory where the model parameter controls the static intersoliton force. We interpolate between the limit of no static force (BPS limit) and the regime where the static inter
The fractal velocity pattern in symmetric kink-antikink collisions in $phi^4$ theory is shown to emerge from a dynamical model with two effective moduli, the kink-antikink separation and the internal shape mode amplitude. The shape mode usefully appr
Our principal focus in the present work is on one-dimensional kink-antikink and two-dimensional kink-antikink stripe interactions in the sine-Gordon equation. Using variational techniques, we reduce the interaction dynamics between a kink and an anti