ﻻ يوجد ملخص باللغة العربية
We study kink-antikink scattering in a one-parameter variant of the $phi^4$ theory where the model parameter controls the static intersoliton force. We interpolate between the limit of no static force (BPS limit) and the regime where the static interaction is small (non-BPS). This allows us to study the impact of the strength of the intersoliton static force on the soliton dynamics. In particular, we analyze how the transition of a bound mode through the mass threshold affects the soliton dynamics in a generic process, i.e., when a static intersoliton force shows up. We show that the thin, precisely localized spectral wall which forms in the limit of no static force, broadens in a well-defined manner when a static force is included, giving rise to what we will call a thick spectral wall. This phenomenon just requires that a discrete mode crosses into the continuum at some intermediate stage of the dynamics and, therefore, should be observable in many soliton-antisoliton collisions.
The fractal velocity pattern in symmetric kink-antikink collisions in $phi^4$ theory is shown to emerge from a dynamical model with two effective moduli, the kink-antikink separation and the internal shape mode amplitude. The shape mode usefully appr
Kink-antikink scattering in the $phi^4$ model is investigated in the limit when the static inter-soliton force vanishes. We observe the formation of spectral walls and, further, identify a new phenomenon, the vacuum wall, whose existence gives rise t
Recent studies have emphasized the important role that a shape deformability of scalar-field models pertaining to the same class with the standard $phi^4$ field, can play in controlling the production of a specific type of breathing bound states so-c
We study kink-antikink collisions in a model which interpolates smoothly between the completely integrable sine-Gordon theory, the $phi^4$ model, and a $phi^6$-like model with three degenerate vacua. We find a rich variety of behaviours, including in
We study boundary scattering in the $phi^4$ model on a half-line with a one-parameter family of Neumann-type boundary conditions. A rich variety of phenomena is observed, which extends previously-studied behaviour on the full line to include regimes