ترغب بنشر مسار تعليمي؟ اضغط هنا

Kink-antikink interactions in the one- and two-dimensional sine-Gordon equation

161   0   0.0 ( 0 )
 نشر من قبل Ricardo Carretero
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our principal focus in the present work is on one-dimensional kink-antikink and two-dimensional kink-antikink stripe interactions in the sine-Gordon equation. Using variational techniques, we reduce the interaction dynamics between a kink and an antikink on their respective time, and space (the latter in the case of the two-dimensional stripes) dependent widths and locations. The resulting reduced system of coupled equations is found to accurately describe the width and undulation dynamics of a single kink stripe as well as that of interacting ones. As an aside, we also discuss two related topics: the computational identification of the kink center and its numerical implications and alternative perturbative and multiple scales approaches to the transverse direction induced dynamics for a single kink stripe in the two-dimensional realm.



قيم البحث

اقرأ أيضاً

We study kink-antikink collisions in a model which interpolates smoothly between the completely integrable sine-Gordon theory, the $phi^4$ model, and a $phi^6$-like model with three degenerate vacua. We find a rich variety of behaviours, including in tegrability breaking, resonance windows with increasingly irregular patterns, and new types of windows near the $phi^6$-like regime. False vacua, extra kink modes and kink fragmentation play important roles in the explanations of these phenomena. Our numerical studies are backed up by detailed analytical considerations.
We study the two-dimensional stochastic sine-Gordon equation (SSG) in the hyperbolic setting. In particular, by introducing a suitable time-dependent renormalization for the relevant imaginary multiplicative Gaussian chaos, we prove local well-posedn ess of SSG for any value of a parameter $beta^2 > 0$ in the nonlinearity. This exhibits sharp contrast with the parabolic case studied by Hairer and Shen (2016) and Chandra, Hairer, and Shen (2018), where the parameter is restricted to the subcritical range: $0 < beta^2 < 8 pi$. We also present a triviality result for the unrenormalized SSG.
We have examined the dynamical behavior of the kink solutions of the one-dimensional sine-Gordon equation in the presence of a spatially periodic parametric perturbation. Our study clarifies and extends the currently available knowledge on this and r elated nonlinear problems in four directions. First, we present the results of a numerical simulation program which are not compatible with the existence of a radiative threshold, predicted by earlier calculations. Second, we carry out a perturbative calculation which helps interpret those previous predictions, enabling us to understand in depth our numerical results. Third, we apply the collective coordinate formalism to this system and demonstrate numerically that it accurately reproduces the observed kink dynamics. Fourth, we report on a novel occurrence of length scale competition in this system and show how it can be understood by means of linear stability analysis. Finally, we conclude by summarizing the general physical framework that arises from our study.
Motivated by the recently developed duality between elasticity of a crystal and a symmetric tensor gauge theory by Pretko and Radzihovsky, we explore its classical analog, that is a dual theory of the dislocation-mediated melting of a two-dimensional crystal, formulated in terms of a higher derivative vector sine-Gordon model. It provides a transparent description of the continuous two-stage melting in terms of the renormalization-group relevance of two cosine operators that control the sequential unbinding of dislocations and disclinations, respectively corresponding to the crystal-to-hexatic and hexatic-to-isotropic fluid transitions. This renormalization-group analysis compactly reproduces seminal results of the Coulomb gas description, such as the flows of the elastic couplings and of the dislocation and disclination fugacities, as well the temperature dependence of the associated correlation lengths.
We consider $lambdaphi^{4}$ kink and sine-Gordon soliton in the presence of a minimal length uncertainty proportional to the Planck length. The modified Hamiltonian contains an extra term proportional to $p^4$ and the generalized Schrodinger equation is expressed as a forth-order differential equation in quasiposition space. We obtain the modified energy spectrum for the discrete states and compare our results with 1-loop resummed and Hartree approximations for the quantum fluctuations. We finally find some lower bounds for the deformations parameter so that the effects of the minimal length have the dominant role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا