ﻻ يوجد ملخص باللغة العربية
The fractal velocity pattern in symmetric kink-antikink collisions in $phi^4$ theory is shown to emerge from a dynamical model with two effective moduli, the kink-antikink separation and the internal shape mode amplitude. The shape mode usefully approximates Lorentz contractions of the kink and antikink, and the previously problematic null-vector in the shape mode amplitude at zero separation is regularized.
We study kink-antikink scattering in a one-parameter variant of the $phi^4$ theory where the model parameter controls the static intersoliton force. We interpolate between the limit of no static force (BPS limit) and the regime where the static inter
Kink-antikink scattering in the $phi^4$ model is investigated in the limit when the static inter-soliton force vanishes. We observe the formation of spectral walls and, further, identify a new phenomenon, the vacuum wall, whose existence gives rise t
Recent studies have emphasized the important role that a shape deformability of scalar-field models pertaining to the same class with the standard $phi^4$ field, can play in controlling the production of a specific type of breathing bound states so-c
We show that in some kink-antikink (KAK) collisions sphalerons, i.e., unstable static solutions - rather than the asymptotic free soliton states - can be the source of the internal degrees of freedom (normal modes) which trigger the resonance phenome
We study kink-antikink collisions in a model which interpolates smoothly between the completely integrable sine-Gordon theory, the $phi^4$ model, and a $phi^6$-like model with three degenerate vacua. We find a rich variety of behaviours, including in