ترغب بنشر مسار تعليمي؟ اضغط هنا

The Breakdown of Mott Physics at VO$_2$ Surfaces

117   0   0.0 ( 0 )
 نشر من قبل Matthew Wahila
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Matthew J. Wahila




اسأل ChatGPT حول البحث

Transition metal oxides such as vanadium dioxide (VO$_2$), niobium dioxide (NbO$_2$), and titanium sesquioxide (Ti$_2$O$_3$) are known to undergo a temperature-dependent metal-insulator transition (MIT) in conjunction with a structural transition within their bulk. However, it is not typically discussed how breaking crystal symmetry via surface termination affects the complicated MIT physics. Using synchrotron-based x-ray spectroscopy, low energy electron diffraction (LEED), low energy electron microscopy (LEEM), transmission electron microscopy (TEM), and several other experimental techniques, we show that suppression of the bulk structural transition is a common feature at VO$_2$ surfaces. Our density functional theory (DFT) calculations further suggest that this is due to inherent reconstructions necessary to stabilize the surface, which deviate the electronic structure away from the bulk d$^1$ configuration. Our findings have broader ramifications not only for the characterization of other Mott-like MITs, but also for any potential device applications of such materials.



قيم البحث

اقرأ أيضاً

We present evidence of strain-induced modulation of electron correlation effects and increased orbital anisotropy in the rutile phase of epitaxial VO$_2$/TiO$_2$ films from hard x-ray photoelectron spectroscopy and soft V L-edge x-ray absorption spec troscopy, respectively. By using the U(1) slave spin formalism, we further argue that the observed anisotropic correlation effects can be understood by a model of orbital selective Mott transition at a filling that is non-integer, but close to the half-filling. Because the overlaps of wave functions between $d$ orbitals are modified by the strain, orbitally-dependent renormalizations of the bandwidths and the crystal fields occur with the application of strain. These renormalizations generally result in different occupation numbers in different orbitals. We find that if the system has a non-integer filling number near the half-filling such as for VO$_2$, certain orbitals could reach an occupation number closer to half-filling under the strain, resulting in a strong reduction in the quasiparticle weight $Z_{alpha}$ of that orbital. Moreover, an orbital selective Mott transition, defined as the case with $Z_{alpha} = 0$ in some, but not all orbitals, could be accessed by epitaxial strain-engineering of correlated electron systems.
In VO$_2$, the explicit origin of the insulator-to-metal transition is still disputable between Peierls and Mott insulators. Along with the controversy, its second monoclinic (M2) phase has received considerable attention due to the presence of elect ron correlation in undimerized vanadium ions. However, the origin of the M2 phase is still obscure. Here, we study a granular VO$_2$ film using conductive atomic force microscopy and Raman scattering. Upon the structural transition from monoclinic to rutile, we observe directly an intermediate state showing the coexistence of monoclinic M1 and M2 phases. The conductivity near the grain boundary in this regime is six times larger than that of the grain core, producing a donut-like landscape. Our results reveal an intra-grain percolation process, indicating that VO$_2$ with the M2 phase is a Mott insulator.
We reinvestigate the pressure dependence of the crystal structure and antiferromagnetic phase transition in MnTe$_2$ by the rigorous and reliable tool of high pressure neutron powder diffraction. First-principles density functional theory calculation s are carried out in order to gain microscopic insight. The measured Neel temperature of MnTe$_2$ is found to show unusually large pressure dependence of $12$ K GPa$^{-1}$. This gives rise to large violation of Blochs rule given by $alpha=frac{dlog T_N}{dlog V}=-frac{10}{3} approx -3.3$, to a $alpha$ value of -6.0 $pm$ 0.1 for MnTe$_2$. The ab-initio calculation of the electronic structure and the magnetic exchange interactions in MnTe$_2$, for the measured crystal structures at different pressures, gives the pressure dependence of the Neel temperature, $alpha$ to be -5.61, in close agreement with experimental finding. The microscopic origin of this behavior turns to be dictated by the distance dependence of the cation-anion hopping interaction strength.
Through ${in~situ}$ photoemission spectroscopy, we investigated the change in the electronic and crystal structures of dimensionality-controlled VO$_2$ films coherently grown on TiO$_2$(001) substrates. In the nanostructured films, the balance betwee n the instabilities of a bandlike Peierls transition and a Mott transition is controlled as a function of thickness. The characteristic spectral change associated with temperature-driven metal-insulator transition in VO$_2$ thick films holds down to 1.5 nm (roughly corresponding to five V atoms along the [001] direction), whereas VO$_2$ films of less than 1.0 nm exhibit insulating nature without V-V dimerization. These results suggest that the delicate balance between a Mott instability and a bandlike Peierls instability is modulated at a scale of a few nanometers by the dimensional crossover effects and confinement effects, which consequently induce the complicated electronic phase diagram of ultrathin VO$_2$ films.
VO$_{2}$ is a model material system which exhibits a metal to insulator transition at 67$^circ$C. This holds potential for future ultrafast switching in memory devices, but typically requires a purely electronic process to avoid the slow lattice resp onse. The role of lattice vibrations is thus important, but it is not well understood and it has been a long-standing source of controversy. We use a combination of ultrafast spectroscopy and ab initio quantum calculations to unveil the mechanism responsible for the transition. We identify an atypical Peierls vibrational mode which acts as a trigger for the transition. This rules out the long standing paradigm of a purely electronic Mott transition in VO$_{2}$; however, we found a new electron-phonon pathway for a purely reversible electronic transition in a true bi-stable fashion under specific conditions. This transition is very atypical, as it involves purely charge-like excitations and requires only small nuclear displacement. Our findings will prompt the design of future ultrafast electro-resistive non-volatile memory devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا