ﻻ يوجد ملخص باللغة العربية
We reinvestigate the pressure dependence of the crystal structure and antiferromagnetic phase transition in MnTe$_2$ by the rigorous and reliable tool of high pressure neutron powder diffraction. First-principles density functional theory calculations are carried out in order to gain microscopic insight. The measured Neel temperature of MnTe$_2$ is found to show unusually large pressure dependence of $12$ K GPa$^{-1}$. This gives rise to large violation of Blochs rule given by $alpha=frac{dlog T_N}{dlog V}=-frac{10}{3} approx -3.3$, to a $alpha$ value of -6.0 $pm$ 0.1 for MnTe$_2$. The ab-initio calculation of the electronic structure and the magnetic exchange interactions in MnTe$_2$, for the measured crystal structures at different pressures, gives the pressure dependence of the Neel temperature, $alpha$ to be -5.61, in close agreement with experimental finding. The microscopic origin of this behavior turns to be dictated by the distance dependence of the cation-anion hopping interaction strength.
Transition metal oxides such as vanadium dioxide (VO$_2$), niobium dioxide (NbO$_2$), and titanium sesquioxide (Ti$_2$O$_3$) are known to undergo a temperature-dependent metal-insulator transition (MIT) in conjunction with a structural transition wit
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics tha
Calculations employing the local density approximation combined with static and dynamical mean-field theories (LDA+U and LDA+DMFT) indicate that the metal-insulator transition observed at 32 GPa in paramagnetic LaMnO3 at room temperature is not a Mot
We present nonlinear conduction phenomena in the Mott insulator Ca2RuO4 investigated with a proper evaluation of self-heating effects. By utilizing a non-contact infrared thermometer, the sample temperature was accurately determined even in the prese
La$_2$O$_3$Fe$_2$Se$_2$ can be explained in terms of Mott localization in sharp contrast with the metallic behavior of FeSe and other parent parent compounds of iron superconductors. We demonstrate that the key ingredient that makes La$_2$O$_3$Fe$_2$