ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of anomalous breakdown of Blochs rule in the Mott-Hubbard insulator MnTe$_2$

179   0   0.0 ( 0 )
 نشر من قبل Tapan Chatterji
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reinvestigate the pressure dependence of the crystal structure and antiferromagnetic phase transition in MnTe$_2$ by the rigorous and reliable tool of high pressure neutron powder diffraction. First-principles density functional theory calculations are carried out in order to gain microscopic insight. The measured Neel temperature of MnTe$_2$ is found to show unusually large pressure dependence of $12$ K GPa$^{-1}$. This gives rise to large violation of Blochs rule given by $alpha=frac{dlog T_N}{dlog V}=-frac{10}{3} approx -3.3$, to a $alpha$ value of -6.0 $pm$ 0.1 for MnTe$_2$. The ab-initio calculation of the electronic structure and the magnetic exchange interactions in MnTe$_2$, for the measured crystal structures at different pressures, gives the pressure dependence of the Neel temperature, $alpha$ to be -5.61, in close agreement with experimental finding. The microscopic origin of this behavior turns to be dictated by the distance dependence of the cation-anion hopping interaction strength.



قيم البحث

اقرأ أيضاً

116 - Matthew J. Wahila 2020
Transition metal oxides such as vanadium dioxide (VO$_2$), niobium dioxide (NbO$_2$), and titanium sesquioxide (Ti$_2$O$_3$) are known to undergo a temperature-dependent metal-insulator transition (MIT) in conjunction with a structural transition wit hin their bulk. However, it is not typically discussed how breaking crystal symmetry via surface termination affects the complicated MIT physics. Using synchrotron-based x-ray spectroscopy, low energy electron diffraction (LEED), low energy electron microscopy (LEEM), transmission electron microscopy (TEM), and several other experimental techniques, we show that suppression of the bulk structural transition is a common feature at VO$_2$ surfaces. Our density functional theory (DFT) calculations further suggest that this is due to inherent reconstructions necessary to stabilize the surface, which deviate the electronic structure away from the bulk d$^1$ configuration. Our findings have broader ramifications not only for the characterization of other Mott-like MITs, but also for any potential device applications of such materials.
122 - Y. D. Wang , W. L. Yao , Z. M. Xin 2020
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics tha t support a quantum spin liquid state.Here, we determine the electronic and structural properties of 1T-TaS$_2$ using angle-resolved photoemission spectroscopy and X-Ray diffraction. At low temperatures, the 2$pi$/2c-periodic band dispersion, along with half-integer-indexed diffraction peaks along the c axis, unambiguously indicates that the ground state of 1T-TaS$_2$ is a band insulator with interlayer dimerization. Upon heating, however, the system undergoes a transition into a Mott insulating state, which only exists in a narrow temperature window. Our results refute the idea of searching for quantum magnetism in 1T-TaS$_2$ only at low temperatures, and highlight the competition between on-site Coulomb repulsion and interlayer hopping as a crucial aspect for understanding the materials electronic properties.
Calculations employing the local density approximation combined with static and dynamical mean-field theories (LDA+U and LDA+DMFT) indicate that the metal-insulator transition observed at 32 GPa in paramagnetic LaMnO3 at room temperature is not a Mot t-Hubbard transition, but is caused by orbital splitting of the majority-spin eg bands. For LaMnO3 to be insulating at pressures below 32 GPa, both on-site Coulomb repulsion and Jahn-Teller distortion are needed.
233 - R. Okazaki , Y. Nishina , Y. Yasui 2013
We present nonlinear conduction phenomena in the Mott insulator Ca2RuO4 investigated with a proper evaluation of self-heating effects. By utilizing a non-contact infrared thermometer, the sample temperature was accurately determined even in the prese nce of large Joule heating. We find that the resistivity continuously decreases with currents under an isothermal environment. The nonlinearity and the resulting negative differential resistance occurs at relatively low current range, incompatible with conventional mechanisms such as hot electron or impact ionization. We propose a possible current-induced gap suppression scenario, which is also discussed in non-equilibrium superconducting state or charge-ordered insulator.
La$_2$O$_3$Fe$_2$Se$_2$ can be explained in terms of Mott localization in sharp contrast with the metallic behavior of FeSe and other parent parent compounds of iron superconductors. We demonstrate that the key ingredient that makes La$_2$O$_3$Fe$_2$ Se$_2$ a Mott insulator, rather than a correlated metal dominated by the Hunds coupling is the enhanced crystal-field splitting, accompanied by a smaller orbital-resolved kinetic energy. The strong deviation from orbital degeneracy introduced by the crystal-field splitting also pushes this materials close to an orbital-selective Mott transition. We predict that either doping or uniaxial external pressure can drive the material into an orbital-selective Mott state, where only one or few orbitals are metallized while the others remain insulating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا