ﻻ يوجد ملخص باللغة العربية
Through ${in~situ}$ photoemission spectroscopy, we investigated the change in the electronic and crystal structures of dimensionality-controlled VO$_2$ films coherently grown on TiO$_2$(001) substrates. In the nanostructured films, the balance between the instabilities of a bandlike Peierls transition and a Mott transition is controlled as a function of thickness. The characteristic spectral change associated with temperature-driven metal-insulator transition in VO$_2$ thick films holds down to 1.5 nm (roughly corresponding to five V atoms along the [001] direction), whereas VO$_2$ films of less than 1.0 nm exhibit insulating nature without V-V dimerization. These results suggest that the delicate balance between a Mott instability and a bandlike Peierls instability is modulated at a scale of a few nanometers by the dimensional crossover effects and confinement effects, which consequently induce the complicated electronic phase diagram of ultrathin VO$_2$ films.
In VO$_2$, the explicit origin of the insulator-to-metal transition is still disputable between Peierls and Mott insulators. Along with the controversy, its second monoclinic (M2) phase has received considerable attention due to the presence of elect
We present evidence of strain-induced modulation of electron correlation effects and increased orbital anisotropy in the rutile phase of epitaxial VO$_2$/TiO$_2$ films from hard x-ray photoelectron spectroscopy and soft V L-edge x-ray absorption spec
Transition metal oxides such as vanadium dioxide (VO$_2$), niobium dioxide (NbO$_2$), and titanium sesquioxide (Ti$_2$O$_3$) are known to undergo a temperature-dependent metal-insulator transition (MIT) in conjunction with a structural transition wit
We present a spectroscopic study that reveals that the metal-insulator transition of strained VO$_2$ thin films may be driven towards a purely electronic transition, which does not rely on the Peierls dimerization, by the application of mechanical st
Ultrathin films of the itinerant ferromagnet SrRuO$_3$ were studied using transport and magnto-optic polar Kerr effect. We find that below 4 monolayers the films become insulating and their magnetic character changes as they loose their simple ferrom