ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of the M2 phase with its Mott transition in a VO$_2$ film

311   0   0.0 ( 0 )
 نشر من قبل Hoon Kim
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In VO$_2$, the explicit origin of the insulator-to-metal transition is still disputable between Peierls and Mott insulators. Along with the controversy, its second monoclinic (M2) phase has received considerable attention due to the presence of electron correlation in undimerized vanadium ions. However, the origin of the M2 phase is still obscure. Here, we study a granular VO$_2$ film using conductive atomic force microscopy and Raman scattering. Upon the structural transition from monoclinic to rutile, we observe directly an intermediate state showing the coexistence of monoclinic M1 and M2 phases. The conductivity near the grain boundary in this regime is six times larger than that of the grain core, producing a donut-like landscape. Our results reveal an intra-grain percolation process, indicating that VO$_2$ with the M2 phase is a Mott insulator.



قيم البحث

اقرأ أيضاً

We present evidence of strain-induced modulation of electron correlation effects and increased orbital anisotropy in the rutile phase of epitaxial VO$_2$/TiO$_2$ films from hard x-ray photoelectron spectroscopy and soft V L-edge x-ray absorption spec troscopy, respectively. By using the U(1) slave spin formalism, we further argue that the observed anisotropic correlation effects can be understood by a model of orbital selective Mott transition at a filling that is non-integer, but close to the half-filling. Because the overlaps of wave functions between $d$ orbitals are modified by the strain, orbitally-dependent renormalizations of the bandwidths and the crystal fields occur with the application of strain. These renormalizations generally result in different occupation numbers in different orbitals. We find that if the system has a non-integer filling number near the half-filling such as for VO$_2$, certain orbitals could reach an occupation number closer to half-filling under the strain, resulting in a strong reduction in the quasiparticle weight $Z_{alpha}$ of that orbital. Moreover, an orbital selective Mott transition, defined as the case with $Z_{alpha} = 0$ in some, but not all orbitals, could be accessed by epitaxial strain-engineering of correlated electron systems.
116 - Matthew J. Wahila 2020
Transition metal oxides such as vanadium dioxide (VO$_2$), niobium dioxide (NbO$_2$), and titanium sesquioxide (Ti$_2$O$_3$) are known to undergo a temperature-dependent metal-insulator transition (MIT) in conjunction with a structural transition wit hin their bulk. However, it is not typically discussed how breaking crystal symmetry via surface termination affects the complicated MIT physics. Using synchrotron-based x-ray spectroscopy, low energy electron diffraction (LEED), low energy electron microscopy (LEEM), transmission electron microscopy (TEM), and several other experimental techniques, we show that suppression of the bulk structural transition is a common feature at VO$_2$ surfaces. Our density functional theory (DFT) calculations further suggest that this is due to inherent reconstructions necessary to stabilize the surface, which deviate the electronic structure away from the bulk d$^1$ configuration. Our findings have broader ramifications not only for the characterization of other Mott-like MITs, but also for any potential device applications of such materials.
Through ${in~situ}$ photoemission spectroscopy, we investigated the change in the electronic and crystal structures of dimensionality-controlled VO$_2$ films coherently grown on TiO$_2$(001) substrates. In the nanostructured films, the balance betwee n the instabilities of a bandlike Peierls transition and a Mott transition is controlled as a function of thickness. The characteristic spectral change associated with temperature-driven metal-insulator transition in VO$_2$ thick films holds down to 1.5 nm (roughly corresponding to five V atoms along the [001] direction), whereas VO$_2$ films of less than 1.0 nm exhibit insulating nature without V-V dimerization. These results suggest that the delicate balance between a Mott instability and a bandlike Peierls instability is modulated at a scale of a few nanometers by the dimensional crossover effects and confinement effects, which consequently induce the complicated electronic phase diagram of ultrathin VO$_2$ films.
The temperature ($T$) dependent metal-insulator transition (MIT) in VO$_2$ is investigated using bulk sensitive hard x-ray ($sim$ 8 keV) valence band, core level, and V 2$p-3d$ resonant photoemission spectroscopy (PES). The valence band and core leve l spectra are compared with full-multiplet cluster model calculations including a coherent screening channel. Across the MIT, V 3$d$ spectral weight transfer from the coherent ($d^1underbar{it {C}}$ final) states at Fermi level to the incoherent ($d^{0}+d^1underbar{it {L}}$ final) states, corresponding to the lower Hubbard band, lead to gap-formation. The spectral shape changes in V 1$s$ and V 2$p$ core levels as well as the valence band are nicely reproduced from a cluster model calculations, providing electronic structure parameters. Resonant-PES finds that the $d^1underbar{it{L}}$ states resonate across the V 2$p-3d$ threshold in addition to the $d^{0}$ and $d^1underbar{it {C}}$ states. The results support a Mott-Hubbard transition picture for the first order MIT in VO$_2$.
We explore the coexistence region in the vicinity of the Mott critical end point employing a compressible cell spin-$1/2$ Ising-like model. We analyze the case for the spin-liquid candidate $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$, where close to the Mot t critical end point metallic puddles coexist with an insulating ferroelectric phase. Our results are fourfold: $i$) a universal divergent-like behavior of the Gruneisen parameter upon crossing the first-order transition line; $ii$) based on scaling arguments, we show that within the coexistence region, for $any$ system close to the critical point, the relaxation time is entropy-dependent; $iii$) we propose the electric Gruneisen parameter $Gamma_E$, which quantifies the electrocaloric effect; $iv$) we identify the metallic/insulating coexistence region as an electronic Griffiths-like phase. Our findings suggest that $Gamma_E$ governs the dielectric response close to the critical point and that an electronic Griffiths-like phase emerges in the coexistence region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا