ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotically flat, spherical, self-interacting scalar, Dirac and Proca stars

73   0   0.0 ( 0 )
 نشر من قبل Carlos A. R. Herdeiro
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comparative analysis of the self-gravitating solitons arising in the Einstein-Klein-Gordon, Einstein-Dirac and Einstein-Proca models, for the particular case of static, spherically symmetric spacetimes. Differently from the previous study arXiv:1708.05674, the matter fields possess suitable self-interacting terms in the Lagrangians, which allow for the existence of $Q$-ball--type solutions for these models in the flat spacetime limit. In spite of this important difference, our analysis shows that the high degree of universality observed in arXiv:1708.05674 remains, and various spin-independent common patterns are observed.



قيم البحث

اقرأ أيضاً

A numerical analysis shows that a class of scalar-tensor theories of gravity with a scalar field minimally and nonminimally coupled to the curvature allows static and spherically symmetric black hole solutions with scalar-field hair in asymptotically flat spacetimes. In the limit when the horizon radius of the black hole tends to zero, regular scalar solitons are found. The asymptotically flat solutions are obtained provided that the scalar potential $V(phi)$ of the theory is not positive semidefinite and such that its local minimum is also a zero of the potential, the scalar field settling asymptotically at that minimum. The configurations for the minimal coupling case, although unstable under spherically symmetric linear perturbations, are regular and thus can serve as counterexamples to the no-scalar-hair conjecture. For the nonminimal coupling case, the stability will be analyzed in a forthcoming paper.
We present a new family of asymptotically AdS four-dimensional black hole solutions with scalar hair of a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential. For a certain profile of the sca lar field we solve the Einstein equations and we determine the scalar potential. Thermodynamically we show that there is a critical temperature below which there is a phase transition of a black hole with hyperbolic horizon to the new hairy black hole configuration.
Can a dynamically robust bosonic star (BS) produce an (effective) shadow that mimics that of a black hole (BH)? The BH shadow is linked to the existence of light rings (LRs). For free bosonic fields, yielding mini-BSs, it is known that these stars ca n become ultra-compact - i.e., possess LRs - but only for perturbatively unstable solutions. We show this remains the case even when different self-interactions are considered. However, an effective shadow can arise in a different way: if BSs reproduce the existence of an innermost stable circular orbit (ISCO) for timelike geodesics (located at $r_{rm ISCO}=6M$ for a Schwarzschild BH of mass M), the accretion flow morphology around BHs is mimicked and an effective shadow arises in an astrophysical environment. Even though spherical BSs may accommodate stable timelike circular orbits all the way down to their centre, we show the angular velocity along such orbits may have a maximum away from the origin, at $R_{Omega}$; this scale was recently observed to mimic the BHs ISCO in some scenarios of accretion flow. Then: (i) for free scalar fields or with quartic self-interactions, $R_{Omega} eq 0$ only for perturbatively unstable BSs; (ii) for higher scalar self-interactions, e.g. axionic, $R_{Omega} eq 0$ is possible for perturbatively stable BSs, but no solution with $R_{Omega}=6M$ was found in the parameter space explored; (iii) but for free vector fields, yielding Proca stars (PSs), perturbatively stable solutions with $R_{Omega} eq 0$ exist, and indeed $R_{Omega}=6M$ for a particular solution. Thus, dynamically robust spherical PSs can mimic the shadow of a (near-)equilibrium Schwarzschild BH with the same M, in an astrophysical environment, despite the absence of a LR, at least under some observation conditions, as we confirm by comparing the lensing of such PSs and Schwarzschild BHs.
Hawking radiation remains a crucial theoretical prediction of semi-classical gravity and is considered one of the critical tests for a model of quantum gravity. However, Hawkings original derivation used quantum field theory on a fixed background. Ef forts have been made to include the spacetime fluctuations arising from the quantization of the dynamical degrees of freedom of gravity itself and study the effects on the Hawking particles. Using semi-classical analysis, we study the effects of quantum fluctuations of scalar field stress-tensors in asymptotic non-flat spherically symmetric black-hole space-times. Using two different approaches, we obtain a critical length-scale from the horizon at which gravitational interactions become large, i.e., when the back reaction to the metric due to the scalar field becomes significant. For 4-D Schwarzschild AdS (SAdS) and Schwarzschild de Sitter (SdS), the number of relevant modes for the back-reaction is finite only for a specific range of values of M/L (where M is the mass of the black-hole, and L is related to the modulus of the cosmological constant). For SAdS (SdS), the number of relevant modes is infinite for M/L $sim$ 1 (0.2 < M/L < $frac{1}{3sqrt{3}}$). We discuss the implications of these results for the late stages of black-hole evaporation.
We construct rotating boson stars in (4+1)-dimensional asymptotically Anti-de Sitter space-time (aAdS) with two equal angular momenta that are composed out of a massive and self-interacting scalar field. These solutions possess a single Killing vecto r field. We construct explicit solutions of the equations in the case of a fixed AdS background and vanishing self-coupling of the scalar field. These are the generalizations of the oscillons discussed in the literature previously now taking the mass of the scalar field into account. We study the evolution of the spectrum of massive oscillons when taking backreaction and/or the self-coupling into account numerically. We observe that very compact boson stars possess an ergoregion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا