ﻻ يوجد ملخص باللغة العربية
Can a dynamically robust bosonic star (BS) produce an (effective) shadow that mimics that of a black hole (BH)? The BH shadow is linked to the existence of light rings (LRs). For free bosonic fields, yielding mini-BSs, it is known that these stars can become ultra-compact - i.e., possess LRs - but only for perturbatively unstable solutions. We show this remains the case even when different self-interactions are considered. However, an effective shadow can arise in a different way: if BSs reproduce the existence of an innermost stable circular orbit (ISCO) for timelike geodesics (located at $r_{rm ISCO}=6M$ for a Schwarzschild BH of mass M), the accretion flow morphology around BHs is mimicked and an effective shadow arises in an astrophysical environment. Even though spherical BSs may accommodate stable timelike circular orbits all the way down to their centre, we show the angular velocity along such orbits may have a maximum away from the origin, at $R_{Omega}$; this scale was recently observed to mimic the BHs ISCO in some scenarios of accretion flow. Then: (i) for free scalar fields or with quartic self-interactions, $R_{Omega} eq 0$ only for perturbatively unstable BSs; (ii) for higher scalar self-interactions, e.g. axionic, $R_{Omega} eq 0$ is possible for perturbatively stable BSs, but no solution with $R_{Omega}=6M$ was found in the parameter space explored; (iii) but for free vector fields, yielding Proca stars (PSs), perturbatively stable solutions with $R_{Omega} eq 0$ exist, and indeed $R_{Omega}=6M$ for a particular solution. Thus, dynamically robust spherical PSs can mimic the shadow of a (near-)equilibrium Schwarzschild BH with the same M, in an astrophysical environment, despite the absence of a LR, at least under some observation conditions, as we confirm by comparing the lensing of such PSs and Schwarzschild BHs.
Recent trend of research indicates that not only massive but also massless (asymptotic Newtonian mass zero) wormholes can reproduce post-merger initial ring-down gravitational waves characteristic of black hole horizon. In the massless case, it is th
We consider quantum corrections for the Schwarzschild black hole metric by using the generalized uncertainty principle (GUP) to investigate quasinormal modes, shadow and their relationship in the eikonal limit. We calculate the quasinormal frequencie
We present a comparative analysis of the self-gravitating solitons arising in the Einstein-Klein-Gordon, Einstein-Dirac and Einstein-Proca models, for the particular case of static, spherically symmetric spacetimes. Differently from the previous stud
We provide expansions of the Detweiler-Whiting singular field for motion along arbitrary, planar accelerated trajectories in Schwarzschild spacetime. We transcribe these results into mode-sum regularization parameters, computing previously unknown te
The retarded Green function for linear field perturbations of black hole spacetimes is notoriously difficult to calculate. One of the difficulties is due to a Dirac-$delta$ divergence that the Green function possesses when the two spacetime points ar