ﻻ يوجد ملخص باللغة العربية
We construct rotating boson stars in (4+1)-dimensional asymptotically Anti-de Sitter space-time (aAdS) with two equal angular momenta that are composed out of a massive and self-interacting scalar field. These solutions possess a single Killing vector field. We construct explicit solutions of the equations in the case of a fixed AdS background and vanishing self-coupling of the scalar field. These are the generalizations of the oscillons discussed in the literature previously now taking the mass of the scalar field into account. We study the evolution of the spectrum of massive oscillons when taking backreaction and/or the self-coupling into account numerically. We observe that very compact boson stars possess an ergoregion.
We study the dynamics of a spherically symmetric thin shell of perfect fluid embedded in d-dimensional Anti-de Sitter space-time. In global coordinates, besides collapsing solutions, oscillating solutions are found where the shell bounces back and fo
Suppose a one-dimensional isometry group acts on a space, we can consider a submergion induced by the isometry, namely we obtain an orbit space by identification of points on the orbit of the group action. We study the causal structure of the orbit s
We investigate main properties and mutual relations of the so-called A and B-metrics with any value of the cosmological constant. In particular, we explicitly show that both the AII and BI-metrics are, in fact, the famous Schwarzschild-(anti-)de Sitt
In the present work the massless vector field in the de Sitter (dS) space has been quantized. Massless is used here by reference to conformal invariance and propagation on the dS light-cone whereas massive refers to those dS fields which contract at
It is commonly known in the literature that large black holes in anti-de Sitter spacetimes (with reflective boundary condition) are in thermal equilibrium with their Hawking radiation. Focusing on black holes with event horizon of toral topology, we