ﻻ يوجد ملخص باللغة العربية
Analogously to primes in arithmetic progressions to large moduli, we can study primes that are totally split in extensions of $mathbb{Q}$ of high degree. Motivated by a question of Kowalski we focus on the extensions $mathbb{Q}(E[d])$ obtained by adjoining the coordinates of $d$-torsion points of a non-CM elliptic curve $E/mathbb{Q}$. A prime $p$ is said to be an outside prime of $E$ if it is totally split in $mathbb{Q}(E[d])$ for some $d$ with $p<|text{Gal}(mathbb{Q}(E[d])/mathbb{Q})| = d^{4-o(1)}$ (so that $p$ is not accounted for by the expected main term in the Chebotarev Density Theorem). We show that for almost all integers $d$ there exists a non-CM elliptic curve $E/mathbb{Q}$ and a prime $p<|text{Gal}(mathbb{Q}(E[d])/mathbb{Q})|$ which is totally split in $mathbb{Q}(E[d])$. Furthermore, we prove that for almost all $d$ that factorize suitably there exists a non-CM elliptic curve $E/mathbb{Q}$ and a prime $p$ with $p^{0.2694} < d$ which is totally split in $mathbb{Q}(E[d])$. To show this we use work of Kowalski to relate the question to the distribution of primes in certain residue classes modulo $d^2$. Hence, the barrier $p < d^4$ is related to the limit in the classical Bombieri-Vinogradov Theorem. To break past this we make use of the assumption that $d$ factorizes conveniently, similarly as in the works on primes in arithmetic progression to large moduli by Bombieri, Friedlander, Fouvry, and Iwaniec, and in the more recent works of Zhang, Polymath, and the author. In contrast to these works we do not require any of the deep exponential sum bounds (ie. sums of Kloosterman sums or Weil/Deligne bound). Instead, we only require the classical large sieve for multiplicative characters. We use Harmans sieve method to obtain a combinatorial decomposition for primes.
We present a method for constructing optimized equations for the modular curve X_1(N) using a local search algorithm on a suitably defined graph of birationally equivalent plane curves. We then apply these equations over a finite field F_q to efficie
A family $mathcal{F}$ of elliptic curves defined over number fields is said to be typically bounded in torsion if the torsion subgroups $E(F)[$tors$]$ of those elliptic curves $E_{/F}in mathcal{F}$ can be made uniformly bounded after removing from $m
The Mordell-Weil groups $E(mathbb{Q})$ of elliptic curves influence the structures of their quadratic twists $E_{-D}(mathbb{Q})$ and the ideal class groups $mathrm{CL}(-D)$ of imaginary quadratic fields. For appropriate $(u,v) in mathbb{Z}^2$, we def
For an elliptic curve E/Q without complex multiplication we study the distribution of Atkin and Elkies primes l, on average, over all good reductions of E modulo primes p. We show that, under the Generalised Riemann Hypothesis, for almost all primes
An elliptic curve $E$ over $mathbb{Q}$ is said to be good if $N_{E}^{6}<max!left{ leftvert c_{4}^{3}rightvert ,c_{6}^{2}right} $ where $N_{E}$ is the conductor of $E$ and $c_{4}$ and $c_{6}$ are the invariants associated to a global minimal model of