ترغب بنشر مسار تعليمي؟ اضغط هنا

On totally split primes in high-degree torsion fields of elliptic curves

113   0   0.0 ( 0 )
 نشر من قبل Jori Merikoski
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Jori Merikoski




اسأل ChatGPT حول البحث

Analogously to primes in arithmetic progressions to large moduli, we can study primes that are totally split in extensions of $mathbb{Q}$ of high degree. Motivated by a question of Kowalski we focus on the extensions $mathbb{Q}(E[d])$ obtained by adjoining the coordinates of $d$-torsion points of a non-CM elliptic curve $E/mathbb{Q}$. A prime $p$ is said to be an outside prime of $E$ if it is totally split in $mathbb{Q}(E[d])$ for some $d$ with $p<|text{Gal}(mathbb{Q}(E[d])/mathbb{Q})| = d^{4-o(1)}$ (so that $p$ is not accounted for by the expected main term in the Chebotarev Density Theorem). We show that for almost all integers $d$ there exists a non-CM elliptic curve $E/mathbb{Q}$ and a prime $p<|text{Gal}(mathbb{Q}(E[d])/mathbb{Q})|$ which is totally split in $mathbb{Q}(E[d])$. Furthermore, we prove that for almost all $d$ that factorize suitably there exists a non-CM elliptic curve $E/mathbb{Q}$ and a prime $p$ with $p^{0.2694} < d$ which is totally split in $mathbb{Q}(E[d])$. To show this we use work of Kowalski to relate the question to the distribution of primes in certain residue classes modulo $d^2$. Hence, the barrier $p < d^4$ is related to the limit in the classical Bombieri-Vinogradov Theorem. To break past this we make use of the assumption that $d$ factorizes conveniently, similarly as in the works on primes in arithmetic progression to large moduli by Bombieri, Friedlander, Fouvry, and Iwaniec, and in the more recent works of Zhang, Polymath, and the author. In contrast to these works we do not require any of the deep exponential sum bounds (ie. sums of Kloosterman sums or Weil/Deligne bound). Instead, we only require the classical large sieve for multiplicative characters. We use Harmans sieve method to obtain a combinatorial decomposition for primes.



قيم البحث

اقرأ أيضاً

We present a method for constructing optimized equations for the modular curve X_1(N) using a local search algorithm on a suitably defined graph of birationally equivalent plane curves. We then apply these equations over a finite field F_q to efficie ntly generate elliptic curves with nontrivial N-torsion by searching for affine points on X_1(N)(F_q), and we give a fast method for generating curves with (or without) a point of order 4N using X_1(2N).
144 - Tyler Genao 2021
A family $mathcal{F}$ of elliptic curves defined over number fields is said to be typically bounded in torsion if the torsion subgroups $E(F)[$tors$]$ of those elliptic curves $E_{/F}in mathcal{F}$ can be made uniformly bounded after removing from $m athcal{F}$ those whose number field degrees lie in a subset of $mathbb{Z}^+$ with arbitrarily small upper density. For every number field $F$, we prove unconditionally that the family $mathcal{E}_F$ of elliptic curves over number fields with $F$-rational $j$-invariants is typically bounded in torsion. For any integer $dinmathbb{Z}^+$, we also strengthen a result on typically bounding torsion for the family $mathcal{E}_d$ of elliptic curves over number fields with degree $d$ $j$-invariants.
The Mordell-Weil groups $E(mathbb{Q})$ of elliptic curves influence the structures of their quadratic twists $E_{-D}(mathbb{Q})$ and the ideal class groups $mathrm{CL}(-D)$ of imaginary quadratic fields. For appropriate $(u,v) in mathbb{Z}^2$, we def ine a family of homomorphisms $Phi_{u,v}: E(mathbb{Q}) rightarrow mathrm{CL}(-D)$ for particular negative fundamental discriminants $-D:=-D_E(u,v)$, which we use to simultaneously address questions related to lower bounds for class numbers, the structures of class groups, and ranks of quadratic twists. Specifically, given an elliptic curve $E$ of rank $r$, let $Psi_E$ be the set of suitable fundamental discriminants $-D<0$ satisfying the following three conditions: the quadratic twist $E_{-D}$ has rank at least 1; $E_{text{tor}}(mathbb{Q})$ is a subgroup of $mathrm{CL}(-D)$; and $h(-D)$ satisfies an effective lower bound which grows asymptotically like $c(E) log (D)^{frac{r}{2}}$ as $D to infty$. Then for any $varepsilon > 0$, we show that as $X to infty$, we have $$#, left{-X < -D < 0: -D in Psi_E right } , gg_{varepsilon} X^{frac{1}{2}-varepsilon}.$$ In particular, if $ell in {3,5,7}$ and $ell mid |E_{mathrm{tor}}(mathbb{Q})|$, then the number of such discriminants $-D$ for which $ell mid h(-D)$ is $gg_{varepsilon} X^{frac{1}{2}-varepsilon}.$ Moreover, assuming the Parity Conjecture, our results hold with the additional condition that the quadratic twist $E_{-D}$ has rank at least 2.
For an elliptic curve E/Q without complex multiplication we study the distribution of Atkin and Elkies primes l, on average, over all good reductions of E modulo primes p. We show that, under the Generalised Riemann Hypothesis, for almost all primes p there are enough small Elkies primes l to ensure that the Schoof-Elkies-Atkin point-counting algorithm runs in (log p)^(4+o(1)) expected time.
An elliptic curve $E$ over $mathbb{Q}$ is said to be good if $N_{E}^{6}<max!left{ leftvert c_{4}^{3}rightvert ,c_{6}^{2}right} $ where $N_{E}$ is the conductor of $E$ and $c_{4}$ and $c_{6}$ are the invariants associated to a global minimal model of $E$. In this article, we generalize Massers Theorem on the existence of infinitely many good elliptic curves with full $2$-torsion. Specifically, we prove via constructive methods that for each of the fifteen torsion subgroups $T$ allowed by Mazurs Torsion Theorem, there are infinitely many good elliptic curves $E$ with $E!left(mathbb{Q}right) _{text{tors}}cong T$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا