ﻻ يوجد ملخص باللغة العربية
Measuring local temperatures of open systems out of equilibrium is emerging as a novel approach to study the local thermodynamic properties of nanosystems. An operational protocol has been proposed to determine the local temperature by coupling a probe to the system and then minimizing the perturbation to a certain local observable of the probed system. In this paper, we first show that such a local temperature is unique for a single quantum impurity and the given local observable. We then extend this protocol to open systems consisting of multiple quantum impurities by proposing a local minimal perturbation condition (LMPC). The influence of quantum resonances on the local temperature is elucidated by both analytic and numerical results. In particular, we demonstrate that quantum resonances may give rise to strong oscillations of the local temperature along a multiimpurity chain under a thermal bias.
The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are, generally, complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scatte
We extend on ideas from standard thermodynamics to show that temperature can be assigned to a general nonequilibrium quantum system. By choosing a physically motivated complete set of observables and expanding the system state thereupon, one can read
We use a scanning capacitance probe to image transport in the quantum Hall system. Applying a DC bias voltage to the tip induces a ring-shaped incompressible strip (IS) in the 2D electron system (2DES) that moves with the tip. At certain tip position
Non-Hermitian skin effect of Liouvillian superoperators in quantum open systems can induce phenomena of non-trivial damping, known as chiral/helical damping. While non-Hermitian skin effect and chiral/helical damping occur only under open boundary co
Current quantum noise can be pictured as a sum over transitions through which the electronic system exchanges energy with its environment. We formulate this picture and use it to show which type of current correlators are measurable, and in what meas