ﻻ يوجد ملخص باللغة العربية
The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are, generally, complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scattering wavefunctions into which the system is embedded. This causes an {it external mixing} (EM) of the states. Mathematically, EM is related to the existence of singular (the so-called exceptional) points (EPs). The eigenfunctions of a non-Hermitian operator are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wavefunctions. At and near an EP, the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under the influence of an EP. At the parameter value of maximum width bifurcation, the phase rigidity approaches the value one, meaning that the two eigenfunctions become orthogonal. However, the eigenfunctions are externally mixed at this parameter value. The S-matrix and therewith the cross section do contain, in the one-channel case, almost no information on the EM of the states. The situation is completely different in the case with two (or more) channels where the resonance structure is strongly influenced by the EM of the states and interesting features of non-Hermitian quantum physics are revealed. We provide numerical results for two and three nearby eigenstates of a non-Hermitian Hamilton operator which are embedded in one common continuum and influenced by two adjoining EPs. The results are discussed. They are of interest for an experimental test of the non-Hermitian quantum physics as well as for applications.
We extend the concept of superadiabatic dynamics, or transitionless quantum driving, to quantum open systems whose evolution is governed by a master equation in the Lindblad form. We provide the general framework needed to determine the control strat
Time crystals are genuinely non-equilibrium quantum phases of matter that break time-translational symmetry. While in non-equilibrium closed systems time crystals have been experimentally realized, it remains an open question whether or not such a ph
Irreversibility is a fundamental concept with important implications at many levels. It pinpoints the fundamental difference between the intrinsically reversible microscopic equations of motion and the unidirectional arrow of time that emerges at the
The aim of the paper is to study the question whether or not equilibrium states exist in open quantum systems that are embedded in at least two environments and are described by a non-Hermitian Hamilton operator $cal H$. The eigenfunctions of $cal H$
The dissipation generated during a quasistatic thermodynamic process can be characterised by introducing a metric on the space of Gibbs states, in such a way that minimally-dissipating protocols correspond to geodesic trajectories. Here, we show how