ﻻ يوجد ملخص باللغة العربية
Current quantum noise can be pictured as a sum over transitions through which the electronic system exchanges energy with its environment. We formulate this picture and use it to show which type of current correlators are measurable, and in what measurement the zero point fluctuations will play a role (the answer to the latter is as expected: only if the detector excites the system.) Using the above picture, we calculate and give physical interpretation of the finite-frequency finite-temperature current noise in a noninteracting Landauer-type system, where the chemical potentials of terminals 1 and 2 are $mu+eV/2$ and $mu-eV/2$ respectively, and derive a detailed-balance condition for this nonequilibrium system. Finally, we derive a generalized form of the Kubo formula for a wide class of interacting nonequilibrium systems, relating the differential conductivity to the current noise.
The Kubo fluctuation-dissipation theorem relates the current fluctuations of a system in an equilibrium state with the linear AC-conductance. This theorem holds also out of equilibrium provided that the system is in a stationary state and that the li
The Smrcka-Streda version of Kubos linear response formula is widely used in the literature to compute non-equilibrium transport properties of heterostructures. It is particularly useful for the evaluation of intrinsic transport properties associated
A systematic theory of product and diagonal states is developed for tensor products of $mathbb Z_2$-graded $*$-algebras, as well as $mathbb Z_2$-graded $C^*$-algebras. As a preliminary step to achieve this goal, we provide the construction of a {it f
Quantum detailed balance conditions and quantum fluctuation relations are two important concepts in the dynamics of open quantum systems: both concern how such systems behave when they thermalize because of interaction with an environment. We prove t
Measuring local temperatures of open systems out of equilibrium is emerging as a novel approach to study the local thermodynamic properties of nanosystems. An operational protocol has been proposed to determine the local temperature by coupling a pro