ﻻ يوجد ملخص باللغة العربية
Non-Hermitian skin effect of Liouvillian superoperators in quantum open systems can induce phenomena of non-trivial damping, known as chiral/helical damping. While non-Hermitian skin effect and chiral/helical damping occur only under open boundary condition, we propose an effect called information restrain which does not rely on boundary conditions. We demonstrate that information restrain is stable against disorder and is an intrinsic property of a type of open quantum systems or non-Hermitian system. Then we define the strength of information restrain $I_R$, which describes the ratio of different decay rates of signals strengthes along opposite propagation directions. Based on information restrain, We can provide a simple and elegant explanation of chiral and helical damping, and get the local maximum of relative particle number for periodical boundary system, consistent with numerical calculations. In terms of information restrain, we also illustrate the existence of correspondence between edge modes and damping modes and deduce that there are many chiral/helical transport properties in this information restrain class.
We theoretically investigate basic properties of nonequilibrium steady states of periodically-driven open quantum systems based on the full solution of the Maxwell-Bloch equation. In a resonantly driving condition, we find that the transverse relaxat
We consider open quantum systems consisting of a finite system of independent fermions with arbitrary Hamiltonian coupled to one or more equilibrium fermion reservoirs (which need not be in equilibrium with each other). A strong form of the third law
Basing on the theory of Feynmans influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open sy
Kramers theorem ensures double degeneracy in the energy spectrum of a time-reversal symmetric fermionic system with half-integer total spin. Here we are now trying to go beyond the closed system and discuss Kramers degeneracy in open systems out of e
Measuring local temperatures of open systems out of equilibrium is emerging as a novel approach to study the local thermodynamic properties of nanosystems. An operational protocol has been proposed to determine the local temperature by coupling a pro