ﻻ يوجد ملخص باللغة العربية
We consider a fair division model in which agents have positive, zero and negative utilities for items. For this model, we analyse one existing fairness property - EFX - and three new and related properties - EFX$_0$, EFX$^3$ and EF1$^3$ - in combination with Pareto-optimality. With general utilities, we give a modified version of an existing algorithm for computing an EF1$^3$ allocation. With $-alpha/0/alpha$ utilities, this algorithm returns an EFX$^3$ and PO allocation. With absolute identical utilities, we give a new algorithm for an EFX and PO allocation. With $-alpha/0/beta$ utilities, this algorithm also returns such an allocation. We report some new impossibility results as well.
We consider a multi-agent model for fair division of mixed manna (i.e. items for which agents can have positive, zero or negative utilities), in which agents have additive utilities for bundles of items. For this model, we give several general imposs
We consider a fair division setting where indivisible items are allocated to agents. Each agent in the setting has strictly negative, zero or strictly positive utility for each item. We, thus, make a distinction between items that are good for some a
We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads that everyone dislikes, as well as items that some like and
We consider fair division problems where indivisible items arrive one-by-one in an online fashion and are allocated immediately to agents who have additive utilities over these items. Many existing offline mechanisms do not work in this online settin
We study a new but simple model for online fair division in which indivisible items arrive one-by-one and agents have monotone utilities over bundles of the items. We consider axiomatic properties of mechanisms for this model such as strategy-proofne