ﻻ يوجد ملخص باللغة العربية
We consider a fair division setting where indivisible items are allocated to agents. Each agent in the setting has strictly negative, zero or strictly positive utility for each item. We, thus, make a distinction between items that are good for some agents and bad for other agents (i.e. mixed), good for everyone (i.e. goods) or bad for everyone (i.e. bads). For this model, we study axiomatic concepts of allocations such as jealousy-freeness up to one item, envy-freeness up to one item and Pareto-optimality. We obtain many new possibility and impossibility results in regard to combinations of these properties. We also investigate new computational tasks related to such combinations. Thus, we advance the state-of-the-art in fair division of mixed manna.
We consider a fair division model in which agents have positive, zero and negative utilities for items. For this model, we analyse one existing fairness property - EFX - and three new and related properties - EFX$_0$, EFX$^3$ and EF1$^3$ - in combina
We consider a multi-agent model for fair division of mixed manna (i.e. items for which agents can have positive, zero or negative utilities), in which agents have additive utilities for bundles of items. For this model, we give several general imposs
We study the fair division of items to agents supposing that agents can form groups. We thus give natural generalizations of popular concepts such as envy-freeness and Pareto efficiency to groups of fixed sizes. Group envy-freeness requires that no g
We consider fair division problems where indivisible items arrive one-by-one in an online fashion and are allocated immediately to agents who have additive utilities over these items. Many existing offline mechanisms do not work in this online settin
We consider the problem of fairly allocating indivisible goods, among agents, under cardinality constraints and additive valuations. In this setting, we are given a partition of the entire set of goods---i.e., the goods are categorized---and a limit