ترغب بنشر مسار تعليمي؟ اضغط هنا

Greedy Algorithms for Fair Division of Mixed Manna

557   0   0.0 ( 0 )
 نشر من قبل Martin Aleksandrov D
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a multi-agent model for fair division of mixed manna (i.e. items for which agents can have positive, zero or negative utilities), in which agents have additive utilities for bundles of items. For this model, we give several general impossibility results and special possibility results for three common fairness concepts (i.e. EF1, EFX, EFX3) and one popular efficiency concept (i.e. PO). We also study how these interact with common welfare objectives such as the Nash, disutility Nash and egalitarian welfares. For example, we show that maximizing the Nash welfare with mixed manna (or minimizing the disutility Nash welfare) does not ensure an EF1 allocation whereas with goods and the Nash welfare it does. We also prove that an EFX3 allocation may not exist even with identical utilities. By comparison, with tertiary utilities, EFX and PO allocations, or EFX3 and PO allocations always exist. Also, with identical utilities, EFX and PO allocations always exist. For these cases, we give polynomial-time algorithms, returning such allocations and approximating further the Nash, disutility Nash and egalitarian welfares in special cases.



قيم البحث

اقرأ أيضاً

We consider a fair division model in which agents have positive, zero and negative utilities for items. For this model, we analyse one existing fairness property - EFX - and three new and related properties - EFX$_0$, EFX$^3$ and EF1$^3$ - in combina tion with Pareto-optimality. With general utilities, we give a modified version of an existing algorithm for computing an EF1$^3$ allocation. With $-alpha/0/alpha$ utilities, this algorithm returns an EFX$^3$ and PO allocation. With absolute identical utilities, we give a new algorithm for an EFX and PO allocation. With $-alpha/0/beta$ utilities, this algorithm also returns such an allocation. We report some new impossibility results as well.
71 - Martin Aleksandrov 2020
We consider a fair division setting where indivisible items are allocated to agents. Each agent in the setting has strictly negative, zero or strictly positive utility for each item. We, thus, make a distinction between items that are good for some a gents and bad for other agents (i.e. mixed), good for everyone (i.e. goods) or bad for everyone (i.e. bads). For this model, we study axiomatic concepts of allocations such as jealousy-freeness up to one item, envy-freeness up to one item and Pareto-optimality. We obtain many new possibility and impossibility results in regard to combinations of these properties. We also investigate new computational tasks related to such combinations. Thus, we advance the state-of-the-art in fair division of mixed manna.
A matching in a bipartite graph $G:=(X + Y,E)$ is said to be envy-free if no unmatched vertex in $X$ is adjacent to a mathced vertex in $Y$. Every perfect matching is envy-free, but envy-free matchings may exist even when perfect matchings do not. We provide a polynomial-time algorithm for finding an envy-free matching of maximum cardinality. For edge-weighted bipartite graphs, we provide a polynomial-time algorithm for finding a maximum-cardinality envy-free matching of minimum weight. We show how envy-free matchings can be used in various fair division problems with either continuous resources (cakes) or discrete ones. In particular, we show a symmetric algorithm for proportional cake-cutting, an algorithm for $1$-out-of-$(2n-2)$ maximin-share allocation of discrete goods, and an algorithm for $1$-out-of-$lfloor 2n/3rfloor$ maximin-share allocation of discrete bads (chores) among $n$ agents.
We study the fair division problem of allocating a mixed manna under additively separable piecewise linear concave (SPLC) utilities. A mixed manna contains goods that everyone likes and bads that everyone dislikes, as well as items that some like and others dislike. The seminal work of Bogomolnaia et al. [Econometrica17] argue why allocating a mixed manna is genuinely more complicated than a good or a bad manna, and why competitive equilibrium is the best mechanism. They also provide the existence of equilibrium and establish its peculiar properties (e.g., non-convex and disconnected set of equilibria even under linear utilities), but leave the problem of computing an equilibrium open. This problem remained unresolved even for only bad manna under linear utilities. Our main result is a simplex-like algorithm based on Lemkes scheme for computing a competitive allocation of a mixed manna under SPLC utilities, a strict generalization of linear. Experimental results on randomly generated instances suggest that our algorithm will be fast in practice. The problem is known to be PPAD-hard for the case of good manna, and we also show a similar result for the case of bad manna. Given these PPAD-hardness results, designing such an algorithm is the only non-brute-force (non-enumerative) option known, e.g., the classic Lemke-Howson algorithm (1964) for computing a Nash equilibrium in a 2-player game is still one of the most widely used algorithms in practice. Our algorithm also yields several new structural properties as simple corollaries. We obtain a (constructive) proof of existence for a far more general setting, membership of the problem in PPAD, rational-valued solution, and odd number of solutions property. The last property also settles the conjecture of Bogomolnaia et al. in the affirmative.
In this paper, we present new results on the fair and efficient allocation of indivisible goods to agents whose preferences correspond to {em matroid rank functions}. This is a versatile valuation class with several desirable properties (such as mono tonicity and submodularity), which naturally lends itself to a number of real-world domains. We use these properties to our advantage; first, we show that when agent valuations are matroid rank functions, a socially optimal (i.e. utilitarian social welfare-maximizing) allocation that achieves envy-freeness up to one item (EF1) exists and is computationally tractable. We also prove that the Nash welfare-maximizing and the leximin allocations both exhibit this fairness/efficiency combination, by showing that they can be achieved by minimizing any symmetric strictly convex function over utilitarian optimal outcomes. To the best of our knowledge, this is the first valuation function class not subsumed by additive valuations for which it has been established that an allocation maximizing Nash welfare is EF1. Moreover, for a subclass of these valuation functions based on maximum (unweighted) bipartite matching, we show that a leximin allocation can be computed in polynomial time. Additionally, we explore possible extensions of our results to fairness criteria other than EF1 as well as to generalizations of the above valuation classes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا