ﻻ يوجد ملخص باللغة العربية
We study a new but simple model for online fair division in which indivisible items arrive one-by-one and agents have monotone utilities over bundles of the items. We consider axiomatic properties of mechanisms for this model such as strategy-proofness, envy-freeness, and Pareto efficiency. We prove a number of impossibility results that justify why we consider relaxations of the properties, as well as why we consider restricted preference domains on which good axiomatic properties can be achieved. We propose two mechanisms that have good axiomatic fairness properties on restricted but common preference domains.
Two simple and attractive mechanisms for the fair division of indivisible goods in an online setting are LIKE and BALANCED LIKE. We study some fundamental computational problems concerning the outcomes of these mechanisms. In particular, we consider
This paper combines two key ingredients for online algorithms - competitive analysis (e.g. the competitive ratio) and advice complexity (e.g. the number of advice bits needed to improve online decisions) - in the context of a simple online fair divis
Computing market equilibria is a problem of both theoretical and applied interest. Much research focuses on the static case, but in many markets items arrive sequentially and stochastically. We focus on the case of online Fisher markets: individuals
Behavioural economists have shown that people are often averse to inequality and will make choices to avoid unequal outcomes. In this paper, we consider how to allocate indivisible goods fairly so as to minimize inequality. We consider how this inter
We consider fair division problems where indivisible items arrive one-by-one in an online fashion and are allocated immediately to agents who have additive utilities over these items. Many existing offline mechanisms do not work in this online settin