ترغب بنشر مسار تعليمي؟ اضغط هنا

A new measure for the analysis of epidemiological associations: Cannabis use disorder examples

45   0   0.0 ( 0 )
 نشر من قبل Olga Vsevolozhskaya
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Analyses of population-based surveys are instrumental to research on prevention and treatment of mental and substance use disorders. Population-based data provides descriptive characteristics of multiple determinants of public health and are typically available to researchers as an annual data release. To provide trends in national estimates or to update the existing ones, a meta-analytical approach to year-by-year data is typically employed with ORs as effect sizes. However, if the estimated ORs exhibit different patterns over time, some normalization of ORs may be warranted. We propose a new normalized measure of effect size and derive an asymptotic distribution for the respective test statistic. The normalization constant is based on the maximum range of the standardized log(OR), for which we establish a connection to the Laplace Limit Constant. Furthermore, we propose to employ standardized log(OR) in a novel way to obtain accurate posterior inference. Through simulation studies, we show that our new statistic is more powerful than the traditional one for testing the hypothesis OR=1. We then applied it to the United States population estimates of co-occurrence of side effect problem-experiences (SEPE) among newly incident cannabis users, based on the the National Survey on Drug Use and Health (NSDUH), 2004-2014.



قيم البحث

اقرأ أيضاً

The odds ratio (OR) is a measure of effect size commonly used in observational research. OR reflects statistical association between a binary outcome, such as the presence of a health condition, and a binary predictor, such as an exposure to a pollut ant. Statistical inference and interval estimation for OR are often performed on the logarithmic scale, due to asymptotic convergence of log(OR) to a normal distribution. Here, we propose a new normalized measure of effect size, $gamma$, and derive its asymptotic distribution. We show that the new statistic, based on the $gamma$ distribution, is more powerful than the traditional one for testing the hypothesis $H_0$: log(OR)=0. The new normalized effect size is termed `gamma prime in the spirit of $D$, a normalized measure of genetic linkage disequilibrium, which ranges from -1 to 1 for a pair of genetic loci. The normalization constant for $gamma$ is based on the maximum range of the standardized effect size, for which we establish a peculiar connection to the Laplace Limit Constant. Furthermore, while standardized effects are of little value on their own, we propose a powerful application, in which standardized effects are employed as an intermediate step in an approximate, yet accurate posterior inference for raw effect size measures, such as log(OR) and $gamma$.
Quantifying the heterogeneity is an important issue in meta-analysis, and among the existing measures, the $I^2$ statistic is the most commonly used measure in the literature. In this paper, we show that the $I^2$ statistic was, in fact, defined as p roblematic or even completely wrong from the very beginning. To confirm this statement, we first present a motivating example to show that the $I^2$ statistic is heavily dependent on the study sample sizes, and consequently it may yield contradictory results for the amount of heterogeneity. Moreover, by drawing a connection between ANOVA and meta-analysis, the $I^2$ statistic is shown to have, mistakenly, applied the sampling errors of the estimators rather than the variances of the study populations. Inspired by this, we introduce an Intrinsic measure for Quantifying the heterogeneity in meta-analysis, and meanwhile study its statistical properties to clarify why it is superior to the existing measures. We further propose an optimal estimator, referred to as the IQ statistic, for the new measure of heterogeneity that can be readily applied in meta-analysis. Simulations and real data analysis demonstrate that the IQ statistic provides a nearly unbiased estimate of the true heterogeneity and it is also independent of the study sample sizes.
In this paper, we develop a local rank correlation measure which quantifies the performance of dimension reduction methods. The local rank correlation is easily interpretable, and robust against the extreme skewness of nearest neighbor distributions in high dimensions. Some benchmark datasets are studied. We find that the local rank correlation closely corresponds to our visual interpretation of the quality of the output. In addition, we demonstrate that the local rank correlation is useful in estimating the intrinsic dimensionality of the original data, and in selecting a suitable value of tuning parameters used in some algorithms.
We propose a forecasting method for predicting epidemiological health series on a two-week horizon at the regional and interregional resolution. The approach is based on model order reduction of parametric compartmental models, and is designed to acc ommodate small amount of sanitary data. The efficiency of the method is shown in the case of the prediction of the number of infected and removed people during the two pandemic waves of COVID-19 in France, which have taken place approximately between February and November 2020. Numerical results illustrate the promising potential of the approach.
We offer a non-parametric plug-in estimator for an important measure of treatment effect variability and provide minimum conditions under which the estimator is asymptotically efficient. The stratum specific treatment effect function or so-called bli p function, is the average treatment effect for a randomly drawn stratum of confounders. The mean of the blip function is the average treatment effect (ATE), whereas the variance of the blip function (VTE), the main subject of this paper, measures overall clinical effect heterogeneity, perhaps providing a strong impetus to refine treatment based on the confounders. VTE is also an important measure for assessing reliability of the treatment for an individual. The CV-TMLE provides simultaneous plug-in estimates and inference for both ATE and VTE, guaranteeing asymptotic efficiency under one less condition than for TMLE. This condition is difficult to guarantee a priori, particularly when using highly adaptive machine learning that we need to employ in order to eliminate bias. Even in defiance of this condition, CV-TMLE sampling distributions maintain normality, not guaranteed for TMLE, and have a lower mean squared error than their TMLE counterparts. In addition to verifying the theoretical properties of TMLE and CV-TMLE through simulations, we point out some of the challenges in estimating VTE, which lacks double robustness and might be unavoidably biased if the true VTE is small and sample size insufficient. We will provide an application of the estimator on a data set for treatment of acute trauma patients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا