ﻻ يوجد ملخص باللغة العربية
Quantifying the heterogeneity is an important issue in meta-analysis, and among the existing measures, the $I^2$ statistic is the most commonly used measure in the literature. In this paper, we show that the $I^2$ statistic was, in fact, defined as problematic or even completely wrong from the very beginning. To confirm this statement, we first present a motivating example to show that the $I^2$ statistic is heavily dependent on the study sample sizes, and consequently it may yield contradictory results for the amount of heterogeneity. Moreover, by drawing a connection between ANOVA and meta-analysis, the $I^2$ statistic is shown to have, mistakenly, applied the sampling errors of the estimators rather than the variances of the study populations. Inspired by this, we introduce an Intrinsic measure for Quantifying the heterogeneity in meta-analysis, and meanwhile study its statistical properties to clarify why it is superior to the existing measures. We further propose an optimal estimator, referred to as the IQ statistic, for the new measure of heterogeneity that can be readily applied in meta-analysis. Simulations and real data analysis demonstrate that the IQ statistic provides a nearly unbiased estimate of the true heterogeneity and it is also independent of the study sample sizes.
Meta-analysis combines pertinent information from existing studies to provide an overall estimate of population parameters/effect sizes, as well as to quantify and explain the differences between studies. However, testing the between-study heterogene
We offer a non-parametric plug-in estimator for an important measure of treatment effect variability and provide minimum conditions under which the estimator is asymptotically efficient. The stratum specific treatment effect function or so-called bli
A well-interpretable measure of information has been recently proposed based on a partition obtained by intersecting a random sequence with its moving average. The partition yields disjoint sets of the sequence, which are then ranked according to the
Research on methods of meta-analysis (the synthesis of related study results) has dealt with many simple study indices, but less attention has been paid to the issue of summarizing regression slopes. In part this is because of the many complications
A composite likelihood is a non-genuine likelihood function that allows to make inference on limited aspects of a model, such as marginal or conditional distributions. Composite likelihoods are not proper likelihoods and need therefore calibration fo