ﻻ يوجد ملخص باللغة العربية
The odds ratio (OR) is a measure of effect size commonly used in observational research. OR reflects statistical association between a binary outcome, such as the presence of a health condition, and a binary predictor, such as an exposure to a pollutant. Statistical inference and interval estimation for OR are often performed on the logarithmic scale, due to asymptotic convergence of log(OR) to a normal distribution. Here, we propose a new normalized measure of effect size, $gamma$, and derive its asymptotic distribution. We show that the new statistic, based on the $gamma$ distribution, is more powerful than the traditional one for testing the hypothesis $H_0$: log(OR)=0. The new normalized effect size is termed `gamma prime in the spirit of $D$, a normalized measure of genetic linkage disequilibrium, which ranges from -1 to 1 for a pair of genetic loci. The normalization constant for $gamma$ is based on the maximum range of the standardized effect size, for which we establish a peculiar connection to the Laplace Limit Constant. Furthermore, while standardized effects are of little value on their own, we propose a powerful application, in which standardized effects are employed as an intermediate step in an approximate, yet accurate posterior inference for raw effect size measures, such as log(OR) and $gamma$.
Analyses of population-based surveys are instrumental to research on prevention and treatment of mental and substance use disorders. Population-based data provides descriptive characteristics of multiple determinants of public health and are typicall
We present the first acoustic side-channel attack that recovers what users type on the virtual keyboard of their touch-screen smartphone or tablet. When a user taps the screen with a finger, the tap generates a sound wave that propagates on the scree
The odds ratio measure is used in health and social surveys where the odds of a certain event is to be compared between two populations. It is defined using logistic regression, and requires that data from surveys are accompanied by their weights. A
In this paper, we show that the likelihood-ratio measure (a) is invariant with respect to dominating sigma-finite measures, (b) satisfies logical consequences which are not satisfied by standard $p$-values, (c) respects frequentist properties, i.e.,
The odds ratio (OR) is a widely used measure of the effect size in observational research. ORs reflect statistical association between a binary outcome, such as the presence of a health condition, and a binary predictor, such as an exposure to a poll