ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Method for Performance Analysis in Nonlinear Dimensionality Reduction

172   0   0.0 ( 0 )
 نشر من قبل Shojaeddin Chenouri
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we develop a local rank correlation measure which quantifies the performance of dimension reduction methods. The local rank correlation is easily interpretable, and robust against the extreme skewness of nearest neighbor distributions in high dimensions. Some benchmark datasets are studied. We find that the local rank correlation closely corresponds to our visual interpretation of the quality of the output. In addition, we demonstrate that the local rank correlation is useful in estimating the intrinsic dimensionality of the original data, and in selecting a suitable value of tuning parameters used in some algorithms.



قيم البحث

اقرأ أيضاً

172 - Julia Fukuyama 2017
When working with large biological data sets, exploratory analysis is an important first step for understanding the latent structure and for generating hypotheses to be tested in subsequent analyses. However, when the number of variables is large com pared to the number of samples, standard methods such as principal components analysis give results which are unstable and difficult to interpret. To mitigate these problems, we have developed a method which allows the analyst to incorporate side information about the relationships between the variables in a way that encourages similar variables to have similar loadings on the principal axes. This leads to a low-dimensional representation of the samples which both describes the latent structure and which has axes which are interpretable in terms of groups of closely related variables. The method is derived by putting a prior encoding the relationships between the variables on the data and following through the analysis on the posterior distributions of the samples. We show that our method does well at reconstructing true latent structure in simulated data and we also demonstrate the method on a dataset investigating the effects of antibiotics on the composition of bacteria in the human gut.
Spectral dimensionality reduction methods enable linear separations of complex data with high-dimensional features in a reduced space. However, these methods do not always give the desired results due to irregularities or uncertainties of the data. T hus, we consider aggressively modifying the scales of the features to obtain the desired classification. Using prior knowledge on the labels of partial samples to specify the Fiedler vector, we formulate an eigenvalue problem of a linear matrix pencil whose eigenvector has the feature scaling factors. The resulting factors can modify the features of entire samples to form clusters in the reduced space, according to the known labels. In this study, we propose new dimensionality reduction methods supervised using the feature scaling associated with the spectral clustering. Numerical experiments show that the proposed methods outperform well-established supervised methods for toy problems with more samples than features, and are more robust regarding clustering than existing methods. Also, the proposed methods outperform existing methods regarding classification for real-world problems with more features than samples of gene expression profiles of cancer diseases. Furthermore, the feature scaling tends to improve the clustering and classification accuracies of existing unsupervised methods, as the proportion of training data increases.
Manifold learning-based encoders have been playing important roles in nonlinear dimensionality reduction (NLDR) for data exploration. However, existing methods can often fail to preserve geometric, topological and/or distributional structures of data . In this paper, we propose a deep manifold learning framework, called deep manifold transformation (DMT) for unsupervised NLDR and embedding learning. DMT enhances deep neural networks by using cross-layer local geometry-preserving (LGP) constraints. The LGP constraints constitute the loss for deep manifold learning and serve as geometric regularizers for NLDR network training. Extensive experiments on synthetic and real-world data demonstrate that DMT networks outperform existing leading manifold-based NLDR methods in terms of preserving the structures of data.
Existing dimensionality reduction methods are adept at revealing hidden underlying manifolds arising from high-dimensional data and thereby producing a low-dimensional representation. However, the smoothness of the manifolds produced by classic techn iques over sparse and noisy data is not guaranteed. In fact, the embedding generated using such data may distort the geometry of the manifold and thereby produce an unfaithful embedding. Herein, we propose a framework for nonlinear dimensionality reduction that generates a manifold in terms of smooth geodesics that is designed to treat problems in which manifold measurements are either sparse or corrupted by noise. Our method generates a network structure for given high-dimensional data using a nearest neighbors search and then produces piecewise linear shortest paths that are defined as geodesics. Then, we fit points in each geodesic by a smoothing spline to emphasize the smoothness. The robustness of this approach for sparse and noisy datasets is demonstrated by the implementation of the method on synthetic and real-world datasets.
High-dimensional classification has become an increasingly important problem. In this paper we propose a Multivariate Adaptive Stochastic Search (MASS) approach which first reduces the dimension of the data space and then applies a standard classific ation method to the reduced space. One key advantage of MASS is that it automatically adjusts to mimic variable selection type methods, such as the Lasso, variable combination methods, such as PCA, or methods that combine these two approaches. The adaptivity of MASS allows it to perform well in situations where pure variable selection or variable combination methods fail. Another major advantage of our approach is that MASS can accurately project the data into very low-dimensional non-linear, as well as linear, spaces. MASS uses a stochastic search algorithm to select a handful of optimal projection directions from a large number of random directions in each iteration. We provide some theoretical justification for MASS and demonstrate its strengths on an extensive range of simulation studies and real world data sets by comparing it to many classical and modern classification methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا