ﻻ يوجد ملخص باللغة العربية
We present new collisional-radiative models (CRMs) for helium in the quiescent solar corona, and predict the emissivities of the He and He$^+$ lines to be observed by DKIST, Solar Orbiter, and Proba-3. We discuss in detail the rates we selected for these models, highlighting several shortcomings we have found in previous work. As no previous complete and self-consistent coronal CRM for helium existed, we have benchmarked our largest model at a density of 10$^{6}$ cm$^{-3}$ and temperature of 20,000 K against recent CRMs developed for photoionised nebulae. We then present results for the outer solar corona, using new dielectronic recombination rates we have calculated, which increase the abundance of neutral helium by about a factor of two. We also find that all the optical triplet He I lines, and in particular the well known He I 10830 and 5876 A lines are strongly affected by both photo-excitation and photo-ionisation from the disk radiation, and that extensive CRM models are required to obtain correct estimates. Close to the Sun, at an electron density of 10$^{8}$ cm$^{-3}$ and temperature of 1 MK, we predict the emissivity of the He I 10830 A to be comparable to that of the strong Fe XIII coronal line at 10798 A. However, we expect the He I emissivity to sharply fall in the outer corona, with respect to Fe XIII. We confirm that the He$^+$ Lyman $alpha$ at 304 A is also significantly affected by photo-excitation and is expected to be detectable as a strong coronal line up to several solar radii.
We calculate neutrino emissivities from self-annihilating dark matter ($chi$) in the dense and hot stellar interior of a (proto)neutron star. Using a model where dark matter interacts with nucleons in the stellar core through a pseudoscalar boson ($a
The structure of the excited $2^{3}$S and $2^{3}$P triplet states of $^{3}$He and $^{4}$He in an applied magnetic field B is studied using different approximations of the atomic Hamiltonian. All optical transitions (line positions and intensities) of
We study the relationship between solar wind helium to hydrogen abundance ratio ($A_mathrm{He}$), solar wind speed ($v_mathrm{SW}$), and sunspot number (SSN) over solar cycles 23 and 24. This is the first full 22-year Hale cycle measured with the Win
An observing campaign (SOHO JOP 139), coordinated between ground based and SOHO instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines CaII K, Halpha and Na
In this paper we seek to understand the timescale on which the photospheric motions on the Sun braid coronal magnetic field lines. This is a crucial ingredient for determining the viability of the braiding mechanism for explaining the high temperatur