ﻻ يوجد ملخص باللغة العربية
An observing campaign (SOHO JOP 139), coordinated between ground based and SOHO instruments, has been planned to obtain simultaneous spectroheliograms of the same active region in several spectral lines. The chromospheric lines CaII K, Halpha and Na D as well as HeI 10830, 5876, 584 and HeII 304 AA lines have been observed.These simultaneous observations allow us to build semi-empirical models of the chromosphere and low transition region of an active region, taking into account the estimated total number of photoionizing photons impinging on the target active region and their spectral distribution. We obtained a model that matches very well all the observed line profiles, using a standard value for the He abundance ([He]=0.1) and a modified distribution of microturbulence. For this model we study the influence of the coronal radiation on the computed helium lines. We find that, even in an active region, the incident coronal radiation has a limited effect on the UV He lines, while it results of fundamental importance for the 5876 and 10830 lines. Finally we build two more models assuming values of He abundance [He]= 0.07 and 1.5, only in the region where temperatures are larger than 1.* 10^4 K. This region, between the chromosphere and transition region, has been indicated as a good candidate for processes that might be responsible for strong variations of [He]. The set of our observables can still be well reproduced in both cases changing the atmospheric structure mainly in the low transition region. This implies that,to choose between different values of [He], it is necessary to constrain the transition region with different observables, independent on the He lines.
During a coordinated campaign which took place in May 2001, a C-class flare was observed both with SOHO instruments and with the Dunn Solar Telescope of the National Solar Observatory at Sacramento Peak. In two previous papers we have described the o
Active regions are thought to be one contributor to the slow solar wind. Upflows in EUV coronal spectral lines are routinely osberved at their boundaries, and provide the most direct way for upflowing material to escape into the heliosphere. The mech
We study the solar wind helium-to-hydrogen abundances ($A_mathrm{He}$) relationship to solar cycle onset. Using OMNI/Lo data, we show that $A_mathrm{He}$ increases prior to sunspot number (SSN) minima. We also identify a rapid depletion and recovery
We present new collisional-radiative models (CRMs) for helium in the quiescent solar corona, and predict the emissivities of the He and He$^+$ lines to be observed by DKIST, Solar Orbiter, and Proba-3. We discuss in detail the rates we selected for t
We report a systematic strengthening of the local solar surface or fundamental $f$-mode $1$-$2$ days prior to the emergence of an active region (AR) in the same (corotating) location. Except for a possibly related increase in the kurtosis of the magn