ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Field Effects on the 1083 nm Atomic Line of Helium. Optical Pumping of Helium and Optical Polarisation Measurement in High Magnetic Field

122   0   0.0 ( 0 )
 نشر من قبل Francois Marion
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure of the excited $2^{3}$S and $2^{3}$P triplet states of $^{3}$He and $^{4}$He in an applied magnetic field B is studied using different approximations of the atomic Hamiltonian. All optical transitions (line positions and intensities) of the 1083 nm $2^{3}$S-$2^{3}$P transition are computed as a function of B. The effect of metastability exchange collisions between atoms in the ground state and in the $2^{3}$S metastable state is studied, and rate equations are derived, for the populations these states in the general case of an isotopic mixture in an arbitrary field B. It is shown that the usual spin-temperature description remains valid. A simple optical pumping model based on these rate equations is used to study the B-dependence of the population couplings which result from the exchange collisions. Simple spectroscopy measurements are performed using a single-frequency laser diode on the 1083 nm transition. The accuracy of frequency scans and of measurements of transition intensities is studied. Systematic experimental verifications are made for B=0 to 1.5 T. Optical pumping effects resulting from hyperfine decoupling in high field are observed to be in good agreement with the predictions of the simple model. Based on adequately chosen absorption measurements at 1083 nm, a general optical method to measure the nuclear polarisation of the atoms in the ground state in an arbitrary field is described. It is demonstrated at $Bsim$0.1 T, a field for which the usual optical methods could not operate.



قيم البحث

اقرأ أيضاً

The magnetic fields of the solar system planets provide valuable insights into the planets interiors and can have dramatic consequences for the evolution of their atmospheres and interaction with the solar wind. However, we have little direct knowled ge of magnetic fields in exoplanets. Here we present a method for detecting magnetic fields in the atmospheres of close-in exoplanets based on spectropolarimetric transit observations at the wavelength of the helium line at 1083 nm. This methodology has been successfully applied before for exploring magnetic fields in solar coronal filaments. Strong absorption signatures (transit depths on the order of a few percent) in the 1083 nm line have recently been observed for several close-in exoplanets. We show that in the conditions in these escaping atmospheres, metastable helium atoms should be optically pumped by the starlight and, for field strengths more than a few $times 10^{-4}$ G, should align with the magnetic field. This results in linearly polarized absorption at 1083 nm that traces the field direction (the Hanle effect), which we explore by both analytic computation and with the Hazel numerical code. The linear polarization $sqrt{Q^2+U^2}/I$ ranges from $sim 10^{-3}$ in optimistic cases down to a few $times 10^{-5}$ for particularly unfavorable cases, with very weak dependence on field strength. The line-of-sight component of the field results in a slight circular polarization (the Zeeman effect), also reaching $V/Isim {rm few}times 10^{-5}(B_parallel/10,{rm G})$. We discuss the detectability of these signals with current (SPIRou) and future (extremely large telescope) high-resolution infrared spectropolarimeters, and we briefly comment on possible sources of astrophysical contamination.
We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 3S1 -> 3 3P2 line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning Delta = -41 MHz) typically contains few times 1 0^7 atoms at a relatively high (~10^9 cm^-3) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2 * 10^-10 cm^3/s < beta < 1.0 * 10^-9 cm^3/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 3S1 -> 2 3P2 line at 1083 nm. Furthermore, we measure a temperature of 0.46(1) mK, a factor 2.5 lower as compared to the 1083 nm case. Decreasing the detuning to Delta= -9 MHz results in a cloud temperature as low as 0.25(1) mK, at small number of trapped atoms. The 389 nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.
We examine a range of effects arising from ac magnetic fields in high precision metrology. These results are directly relevant to high precision measurements, and accuracy assessments for state-of-the-art optical clocks. Strategies to characterize th ese effects are discussed and a simple technique to accurately determine trap-induced ac magnetic fields in a linear Paul trap is demonstrated using $^{171}mathrm{Yb}^+$
We present the first measurement for helium atoms of the tune-out wavelength at which the atomic polarizability vanishes. We utilise a novel, highly sensitive technique for precisely measuring the effect of variations in the trapping potential of con fined metastable ($2^{3}S_{1}$) helium atoms illuminated by a perturbing laser light field. The measured tune-out wavelength of 413.0938($9_{Stat.}$)($20_{Syst.}$) nm compares well with the value predicted by a theoretical calculation (413.02(9) nm) which is sensitive to finite nuclear mass, relativistic, and quantum electro-dynamic (QED) effects. This provides motivation for more detailed theoretical investigations to test QED.
We analyze how bound-state excitation, electron exchange and the residual binding potential influence above-threshold ionization (ATI) in Helium prepared in an excited $p$ state, oriented parallel and perpendicular to a linearly polarized mid-IR fiel d. Using ab initio B-spline Algebraic Diagrammatic Construction (ADC), and several one-electron methods with effective potentials, including the Schrodinger solver Qprop, modifi
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا