ﻻ يوجد ملخص باللغة العربية
In this paper we seek to understand the timescale on which the photospheric motions on the Sun braid coronal magnetic field lines. This is a crucial ingredient for determining the viability of the braiding mechanism for explaining the high temperatures observed in the corona. We study the topological complexity induced in the coronal magnetic field, primarily using plasma motions extracted from magneto-convection simulations. This topological complexity is quantified using the field line winding, finite time topological entropy and passive scalar mixing. With these measures we contrast mixing efficiencies of the magneto-convection simulation, a benchmark flow known as a ``blinking vortex, and finally photospheric flows inferred from sequences of observed magnetograms using local correlation tracking. While the highly resolved magneto-convection simulations induce a strong degree of field line winding and finite time topological entropy, the values obtained from the observations from the plage region are around an order of magnitude smaller. This behavior is carried over to the finite time topological entropy. Nevertheless, the results suggest that the photospheric motions induce complex tangling of the coronal field on a timescale of hours.
By defining an appropriate field line helicity, we apply the powerful concept of magnetic helicity to the problem of global magnetic field evolution in the Suns corona. As an ideal-magnetohydrodynamic invariant, the field line helicity is a meaningfu
Aims. We show how the build-up of magnetic gradients in the Suns corona may be inferred directly from photospheric velocity data. This enables computation of magnetic connectivity measures such as the squashing factor without recourse to magnetic fie
The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruptions events is s
Zonal flows in rotating systems have been previously shown to be suppressed by the imposition of a background magnetic field aligned with the direction of rotation. Understanding the physics behind the suppression may be important in systems found in
Following the eruption of a filament from a flaring active region, sunward-flowing voids are often seen above developing post-eruption arcades. First discovered using the soft X-ray telescope aboard Yohkoh, these supra-arcade downflows (SADs) are now