ﻻ يوجد ملخص باللغة العربية
In this paper we obtain a Wiener-Hopf type factorization for a time-inhomogeneous arithmetic Brownian motion with deterministic time-dependent drift and volatility. To the best of our knowledge, this paper is the very first step towards realizing the objective of deriving Wiener-Hopf type factorizations for (real-valued) time-inhomogeneous L{e}vy processes. In particular, we argue that the classical Wiener-Hopf factorization for time-homogeneous L{e}vy processes quite likely does not carry over to the case of time-inhomogeneous L{e}vy processes.
This work contributes to the theory of Wiener-Hopf type factorization for finite Markov chains. This theory originated in the seminal paper Barlow et al. (1980), which treated the case of finite time-homogeneous Markov chains. Since then, several wor
We consider the last zero crossing time $T_{mu,t}$ of a Brownian motion, with drift $mu eq 0$ in the time interval $[0, t]$. We prove the large deviation principle of ${T_{mu sqrt r t} : r > 0 }$ as $r$ tends to infinity. Moreover, motivated by the
We introduce a new notion of G-normal distributions. This will bring us to a new framework of stochastic calculus of Itos type (Itos integral, Itos formula, Itos equation) through the corresponding G-Brownian motion. We will also present analytical c
In this paper, we will first give the numerical simulation of the sub-fractional Brownian motion through the relation of fractional Brownian motion instead of its representation of random walk. In order to verify the rationality of this simulation, w
Consider a storage system where the content is driven by a Brownian motion absent control. At any time, one may increase or decrease the content at a cost proportional to the amount of adjustment. A decrease of the content takes effect immediately, w