ﻻ يوجد ملخص باللغة العربية
This work contributes to the theory of Wiener-Hopf type factorization for finite Markov chains. This theory originated in the seminal paper Barlow et al. (1980), which treated the case of finite time-homogeneous Markov chains. Since then, several works extended the results of Barlow et al. (1980) in many directions. However, all these extensions were dealing with time-homogeneous Markov case. The first work dealing with the time-inhomogeneous situation was Bielecki et al. (2018), where Wiener-Hopf type factorization for time-inhomogeneous finite Markov chain with piecewise constant generator matrix function was derived. In the present paper we go further: we derive and study Wiener-Hopf type factorization for time-inhomogeneous finite Markov chain with the generator matrix function being a fairly general matrix valued function of time.
In this paper we obtain a Wiener-Hopf type factorization for a time-inhomogeneous arithmetic Brownian motion with deterministic time-dependent drift and volatility. To the best of our knowledge, this paper is the very first step towards realizing the
Convergence rates of Markov chains have been widely studied in recent years. In particular, quantitative bounds on convergence rates have been studied in various forms by Meyn and Tweedie [Ann. Appl. Probab. 4 (1994) 981-1101], Rosenthal [J. Amer. St
Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computation
Max-stable processes are central models for spatial extremes. In this paper, we focus on some space-time max-stable models introduced in Embrechts et al. (2016). The processes considered induce discrete-time Markov chains taking values in the space o
This paper contributes an in-depth study of properties of continuous time Markov chains (CTMCs) on non-negative integer lattices $N_0^d$, with particular interest in one-dimensional CTMCs with polynomial transitions rates. Such stochastic processes a