ﻻ يوجد ملخص باللغة العربية
We consider the last zero crossing time $T_{mu,t}$ of a Brownian motion, with drift $mu eq 0$ in the time interval $[0, t]$. We prove the large deviation principle of ${T_{mu sqrt r t} : r > 0 }$ as $r$ tends to infinity. Moreover, motivated by the results on moderate deviations in the literature, we also prove a class of large deviation principles for the same random variables with different scalings, which are governed by the same rate function. Finally we compare some aspects of the classical moderate deviation results, and the results in this paper.
In this paper we obtain a Wiener-Hopf type factorization for a time-inhomogeneous arithmetic Brownian motion with deterministic time-dependent drift and volatility. To the best of our knowledge, this paper is the very first step towards realizing the
Consider a storage system where the content is driven by a Brownian motion absent control. At any time, one may increase or decrease the content at a cost proportional to the amount of adjustment. A decrease of the content takes effect immediately, w
In applications spaning from image analysis and speech recognition, to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level,
We construct a $K$-rough path above either a space-time or a spatial fractional Brownian motion, in any space dimension $d$. This allows us to provide an interpretation and a unique solution for the corresponding parabolic Anderson model, understood
In this paper, we will first give the numerical simulation of the sub-fractional Brownian motion through the relation of fractional Brownian motion instead of its representation of random walk. In order to verify the rationality of this simulation, w