ﻻ يوجد ملخص باللغة العربية
Consider a storage system where the content is driven by a Brownian motion absent control. At any time, one may increase or decrease the content at a cost proportional to the amount of adjustment. A decrease of the content takes effect immediately, while an increase is realized after a fixed lead time $lt$. Holding costs are incurred continuously over time and are a convex function of the content. The objective is to find a control policy that minimizes the expected present value of the total costs. Due to the positive lead time for upward adjustments, one needs to keep track of all the outstanding upward adjustments as well as the actual content at time $t$ as there may also be downward adjustments during $[t,t+lt)$, i.e., the state of the system is a function on $[0,ell]$. To the best of our knowledge, this is the first paper to study instantaneous control of stochastic systems in such a functional setting. We first extend the concept of $L^ atural$-convexity to function spaces and establish the $L^ atural$-convexity of the optimal cost function. We then derive various properties of the cost function and identify the structure of the optimal policy as a state-dependent two-sided reflection mapping making the minimum amount of adjustment necessary to keep the system states within a certain region.
Local perturbations of a Brownian motion are considered. As a limit we obtain a non-Markov process that behaves as a reflected Brownian motion on the positive half line until its local time at zero reaches some exponential level, then changes a sign
We construct a $K$-rough path above either a space-time or a spatial fractional Brownian motion, in any space dimension $d$. This allows us to provide an interpretation and a unique solution for the corresponding parabolic Anderson model, understood
We consider the last zero crossing time $T_{mu,t}$ of a Brownian motion, with drift $mu eq 0$ in the time interval $[0, t]$. We prove the large deviation principle of ${T_{mu sqrt r t} : r > 0 }$ as $r$ tends to infinity. Moreover, motivated by the
In this paper we obtain a Wiener-Hopf type factorization for a time-inhomogeneous arithmetic Brownian motion with deterministic time-dependent drift and volatility. To the best of our knowledge, this paper is the very first step towards realizing the
The generalized fractional Brownian motion is a Gaussian self-similar process whose increments are not necessarily stationary. It appears in applications as the scaling limit of a shot noise process with a power law shape function and non-stationary