ﻻ يوجد ملخص باللغة العربية
We study sequential state discrimination measurements performed on the same qubit by subsequent observers. Specifically, we focus on the case when the observers perform a kind of a minimum-error type state discriminating measurement where the goal of the observers is to maximize their joint probability of successfully guessing the state that the qubit was initially prepared in. We call this the joint best guess strategy. In this scheme, Alice prepares a qubit in one of two possible states. The qubit is first sent to Bob, who measures it, and then on to Charlie, and so on to altogether N consecutive receivers who all perform measurements on it. The goal for all observers is to determine which state Alice sent. In the joint best guess strategy, every time a system is received the observer is required to make a guess, aided by the measurement, about its state. The price to pay for this requirement is that errors must be permitted, the guess can be correct or in error. There is a nonzero probability for all the receivers to successfully identify the initially prepared state, and we maximize this joint probability of success. This work is a step toward developing a theory of nondestructive sequential quantum measurements and could be useful in multiparty quantum communication schemes based on communicating with single qubits, particularly in schemes employing continuous variable states. It also represents a case where subsequent observers can probabilistically and optimally get around both the collapse postulate and the no-broadcasting theorem.
There is currently much interest in the recycling of entangled systems, for use in quantum information protocols by sequential observers. In this work, we study the sequential generation of Bell nonlocality via recycling one or both components of two
Non-local Advantage of Quantum Coherence(NAQC) or steerability of local quantum coherence is a strong non-local resource based on coherence complementarity relations. In this work, we provide an upper bound on the number of observers who can independ
We give strong analytic and numerical evidence that, under mild measurement assumptions, two qubits cannot both be recycled to generate Bell nonlocality between multiple independent observers on each side. This is surprising, as under the same assump
We investigate the trade-off between information gain and disturbance for a class of weak von Neumann measurements on spin-$frac{1}{2}$ particles, and derive the unusual measurement pointer state that saturates this trade-off. We then consider the fu
A quantum battery is a work reservoir that stores energy in quantum degrees of freedom. When immersed in an environment an open quantum battery needs to be stabilized against free energy leakage into the environment. For this purpose we here propose