ﻻ يوجد ملخص باللغة العربية
Non-local Advantage of Quantum Coherence(NAQC) or steerability of local quantum coherence is a strong non-local resource based on coherence complementarity relations. In this work, we provide an upper bound on the number of observers who can independently steer the coherence of the observer in the other wing in a scenario where half of an entangled pair of spin-$frac{1}{2}$ particles is shared between a single observer (Bob) in one wing and several observers (Alices) on the other, who can act sequentially and independently of each other. We consider one-parameter dichotomic POVMs for the Alices and mutually unbiased basis in which Bob measures coherence in case of the maximally entangled bipartite qubit state. We show that not more than two Alices can exhibit NAQC when $l_1$-norm of coherence measure is probed, whereas for two other measures of coherence, only one Alice can reveal NAQC within the same framework.
We give strong analytic and numerical evidence that, under mild measurement assumptions, two qubits cannot both be recycled to generate Bell nonlocality between multiple independent observers on each side. This is surprising, as under the same assump
We introduce a notion of contextuality for transformations in sequential contexts, distinct from the Bell-Kochen-Specker and Spekkens notions of contextuality. Within a transformation-based model for quantum computation we show that strong sequential
Sequential Quantum Secret Sharing schemes (QSS) do not use entangled states for secret sharing, rather they rely on sequential operations of the players on a single state which is circulated between the players. In order to check the viability of the
In this letter, we investigate the effects of non-Hermitian driving on quantum coherence in a bipartite system. The results that the dynamical localization destroyed by the Hermitian interaction revives are an evidence of the restoration of quantum c
Weak measurements may result in extra quantity of quantumness of correlations compared with standard projective measurement on a bipartite quantum state. We show that the quantumness of correlations by weak measurements can be consumed for informatio