ﻻ يوجد ملخص باللغة العربية
There is currently much interest in the recycling of entangled systems, for use in quantum information protocols by sequential observers. In this work, we study the sequential generation of Bell nonlocality via recycling one or both components of two-qubit states. We first give a description of two-valued qubit measurements in terms of measurement bias, strength, and reversibility, and derive useful tradeoff relations between them. Then, we derive one-sided monogamy relations that support the recent Conjecture in [S. Cheng {it et al.}, arXiv:2102.11574], that if the first pair of observers violate Bell nonlocality then a subsequent independent pair cannot. We also answer a question raised in [P. J. Brown and R. Colbeck, Phys. Rev. Lett. textbf{125}, 090401 (2020)], by showing that the conditions given therein for the recycling of one qubit by an arbitrarily large number of observers are sufficient but not necessary. Finally, we find that it is possible to share Bell nonlocality between multiple pairs of independent observers on both sides, if sufficiently many pairs of qubits are shared. Our results are based on a formalism that is applicable to more general problems in recycling entanglement, and hence is expected to aid progress in this field.
We give strong analytic and numerical evidence that, under mild measurement assumptions, two qubits cannot both be recycled to generate Bell nonlocality between multiple independent observers on each side. This is surprising, as under the same assump
We study sequential state discrimination measurements performed on the same qubit by subsequent observers. Specifically, we focus on the case when the observers perform a kind of a minimum-error type state discriminating measurement where the goal of
We consider the behaviour of bipartite and tripartite non-locality between fermionic entangled states shared by observers, one of whom uniformly accelerates. We find that while fermionic entanglement persists for arbitrarily large acceleration, the B
Alice and Bob each have half of a pair of entangled qubits. Bob measures his half and then passes his qubit to a second Bob who measures again and so on. The goal is to maximize the number of Bobs that can have an expected violation of the Clauser-Ho
Entanglement and Bell nonlocality are used to describe quantum inseparabilities. Bell-nonlocal states form a strict subset of entangled states. A natural question arises concerning how much territory Bell nonlocality occupies entanglement for a gener