ﻻ يوجد ملخص باللغة العربية
We give strong analytic and numerical evidence that, under mild measurement assumptions, two qubits cannot both be recycled to generate Bell nonlocality between multiple independent observers on each side. This is surprising, as under the same assumptions it is possible to recycle just one of the qubits an arbitrarily large number of times [P. J. Brown and R. Colbeck, Phys. Rev. Lett. 125, 090401 (2020)]. We derive corresponding one-sided monogamy relations that rule out two-sided recycling for a wide range of parameters, based on a general tradeoff relation between the strengths and maximum reversibilities of qubit measurements. We also show if the assumptions are relaxed to allow sufficiently biased measurement selections, then there is a narrow range of measurement strengths that allows two-sided recycling for two observers on each side, and propose an experimental test. Our methods may be readily applied to other types of quantum correlations, such as steering and entanglement, and hence to general information protocols involving sequential measurements.
There is currently much interest in the recycling of entangled systems, for use in quantum information protocols by sequential observers. In this work, we study the sequential generation of Bell nonlocality via recycling one or both components of two
Non-local Advantage of Quantum Coherence(NAQC) or steerability of local quantum coherence is a strong non-local resource based on coherence complementarity relations. In this work, we provide an upper bound on the number of observers who can independ
Bells theorem proves that quantum theory is inconsistent with local physical models. It has propelled research in the foundations of quantum theory and quantum information science. As a fundamental feature of quantum theory, it impacts predictions fa
We consider the behaviour of bipartite and tripartite non-locality between fermionic entangled states shared by observers, one of whom uniformly accelerates. We find that while fermionic entanglement persists for arbitrarily large acceleration, the B
As with entanglement, different forms of Bell nonlocality arise in the multipartite scenario. These can be defined in terms of relaxations of the causal assumptions in local hidden-variable theories. However, a characterisation of all the forms of mu