ﻻ يوجد ملخص باللغة العربية
We study the fair division of items to agents supposing that agents can form groups. We thus give natural generalizations of popular concepts such as envy-freeness and Pareto efficiency to groups of fixed sizes. Group envy-freeness requires that no group envies another group. Group Pareto efficiency requires that no group can be made better off without another group be made worse off. We study these new group properties from an axiomatic viewpoint. We thus propose new fairness taxonomies that generalize existing taxonomies. We further study ne
We consider fair division problems where indivisible items arrive one-by-one in an online fashion and are allocated immediately to agents who have additive utilities over these items. Many existing offline mechanisms do not work in this online settin
We introduce and analyze new envy-based fairness concepts for agents with weights that quantify their entitlements in the allocation of indivisible items. We propose two variants of weighted envy-freeness up to one item (WEF1): strong, where envy can
We consider a fair division setting where indivisible items are allocated to agents. Each agent in the setting has strictly negative, zero or strictly positive utility for each item. We, thus, make a distinction between items that are good for some a
We consider the problem of dividing limited resources to individuals arriving over $T$ rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e. preferences over the different resources). A
We study a new but simple model for online fair division in which indivisible items arrive one-by-one and agents have monotone utilities over bundles of the items. We consider axiomatic properties of mechanisms for this model such as strategy-proofne