ﻻ يوجد ملخص باللغة العربية
We show that Malthusian flocks -- i.e., coherently moving collections of self-propelled entities (such as living creatures) which are being born and dying during their motion -- belong to a new universality class in spatial dimensions $d>2$. We calculate the universal exponents and scaling laws of this new universality class to $O(epsilon)$ in a $d=4-epsilon$ expansion, and find these are different from the canonical exponents previously conjectured to hold for immortal flocks (i.e., those without birth and death) and shown to hold for incompressible flocks with spatial dimensions in the range of $2 < d leq 4$. We also obtain a universal amplitude ratio relating the damping of transverse and longitudinal velocity and density fluctuations in these systems. Furthermore, we find a universal separatrix in real (${bf r}$) space between two regions in which the equal time density correlation $langledeltarho({bf r}, t)deltarho(0, t)rangle$ has opposite signs. Our expansion should be quite accurate in $d=3$, allowing precise quantitative comparisons between our theory, simulations, and experiments.
We show that Malthusian flocks -- i.e., coherently moving collections of self-propelled entities (such as living creatures) which are being born and dying during their motion -- belong to a new universality class in spatial dimensions $d>2$. We calcu
We study the Ising model in $d=2+epsilon$ dimensions using the conformal bootstrap. As a minimal-model Conformal Field Theory (CFT), the critical Ising model is exactly solvable at $d=2$. The deformation to $d=2+epsilon$ with $epsilonll 1$ furnishes
We adopt a combination of analytical and numerical methods to study the renormalization group flow of the most general field theory with quartic interaction in $d=4-epsilon$ with $N=3$ and $N=4$ scalars. For $N=3$, we find that it admits only three n
We study incompressible systems of motile particles with alignment interactions. Unlike their compressible counterparts, in which the order-disorder (i.e., moving to static) transition, tuned by either noise or number density, is discontinuous, in in
We study the scaling dimension $Delta_{phi^n}$ of the operator $phi^n$ where $phi$ is the fundamental complex field of the $U(1)$ model at the Wilson-Fisher fixed point in $d=4-varepsilon$. Even for a perturbatively small fixed point coupling $lambda