ﻻ يوجد ملخص باللغة العربية
We study incompressible systems of motile particles with alignment interactions. Unlike their compressible counterparts, in which the order-disorder (i.e., moving to static) transition, tuned by either noise or number density, is discontinuous, in incompressible systems this transition can be continuous, and belongs to a new universality class. We calculate the critical exponents to $O(epsilon)$in an $epsilon=4-d$ expansion, and derive two exact scaling relations. This is the first analytic treatment of a phase transition in a new universality class in an active system.
Many systems, including biological tissues and foams, are made of highly packed units having high deformability but low compressibility. At two dimensions, these systems offer natural tesselations of plane with fixed density, in which transitions fro
We analyze the jamming transition that occurs as a function of increasing packing density in a disordered two-dimensional assembly of disks at zero temperature for ``Point J of the recently proposed jamming phase diagram. We measure the total number
We report on thermodynamic and optical measurements of the condensation process of $^4$He in three silica aerogels of different microstructures. For the two base-catalysed aerogels, the temperature dependence of the shape of adsorption isotherms and
We study universal behavior in the moving phase of a generic system of motile particles with alignment interactions in the incompressible limit for spatial dimensions $d>2$. Using a dynamical renormalization group analysis, we obtain the exact dynami
We report the selective stabilization of chiral rotational direction of bacterial vortices, from turbulent bacterial suspension, in achiral circular microwells sealed by an oil-water interface. This broken-symmetry, originating from the intrinsic chi