ﻻ يوجد ملخص باللغة العربية
We show that Malthusian flocks -- i.e., coherently moving collections of self-propelled entities (such as living creatures) which are being born and dying during their motion -- belong to a new universality class in spatial dimensions $d>2$. We calculate the universal exponents and scaling laws of this new universality class to $O(epsilon)$ in an $epsilon=4-d$ expansion, and find these are different from the canonical exponents previously conjectured to hold for immortal flocks (i.e., those without birth and death) and shown to hold for incompressible flocks in $d>2$. Our expansion should be quite accurate in $d=3$, allowing precise quantitative comparisons between our theory, simulations, and experiments.
We show that Malthusian flocks -- i.e., coherently moving collections of self-propelled entities (such as living creatures) which are being born and dying during their motion -- belong to a new universality class in spatial dimensions $d>2$. We calcu
We study the multi-scale description of large-time collective behavior of agents driven by alignment. The resulting multi-flock dynamics arises naturally with realistic initial configurations consisting of multiple spatial scaling, which in turn peak
Holomorphic fields play an important role in 2d conformal field theory. We generalize them to d>2 by introducing the notion of Cauchy conformal fields, which satisfy a first order differential equation such that they are determined everywhere once we
The chiral spin-glass Potts system with q=3 states is studied in d=2 and 3 spatial dimensions by renormalization-group theory and the global phase diagrams are calculated in temperature, chirality concentration p, and chirality-breaking concentration
We study incompressible systems of motile particles with alignment interactions. Unlike their compressible counterparts, in which the order-disorder (i.e., moving to static) transition, tuned by either noise or number density, is discontinuous, in in