ﻻ يوجد ملخص باللغة العربية
We adopt a combination of analytical and numerical methods to study the renormalization group flow of the most general field theory with quartic interaction in $d=4-epsilon$ with $N=3$ and $N=4$ scalars. For $N=3$, we find that it admits only three nondecomposable critical points: the Wilson-Fisher with $O(3)$ symmetry, the cubic with $H_3=(mathbb{Z}_2)^3rtimes S_3$ symmetry, and the biconical with $O(2)times mathbb{Z}_2$. For $N=4$, our analysis reveals the existence of new nontrivial solutions with discrete symmetries and with up to three distinct field anomalous dimensions.
Fixed points of scalar field theories with quartic interactions in $d=4-varepsilon$ dimensions are considered in full generality. For such theories it is known that there exists a scalar function $A$ of the couplings through which the leading-order b
A non-perturbative Renormalization Group approach is used to calculate scaling functions for an O(4) model in d=3 dimensions in the presence of an external symmetry-breaking field. These scaling functions are important for the analysis of critical be
Boundaries in three-dimensional $mathcal{N}=2$ superconformal theories may preserve one half of the original bulk supersymmetry. There are two possibilities which are characterized by the chirality of the leftover supercharges. Depending on the choic
We compute, using the method of large spin perturbation theory, the anomalous dimensions and OPE coefficients of all leading twist operators in the critical $ O(N) $ model, to fourth order in the $ epsilon $-expansion. This is done fully within a boo
We study the Ising model in $d=2+epsilon$ dimensions using the conformal bootstrap. As a minimal-model Conformal Field Theory (CFT), the critical Ising model is exactly solvable at $d=2$. The deformation to $d=2+epsilon$ with $epsilonll 1$ furnishes