ﻻ يوجد ملخص باللغة العربية
We consider the optimization problem associated with fitting two-layer ReLU networks with $k$ hidden neurons, where labels are assumed to be generated by a (teacher) neural network. We leverage the rich symmetry exhibited by such models to identify various families of critical points and express them as power series in $k^{-frac{1}{2}}$. These expressions are then used to derive estimates for several related quantities which imply that not all spurious minima are alike. In particular, we show that while the loss function at certain types of spurious minima decays to zero like $k^{-1}$, in other cases the loss converges to a strictly positive constant. The methods used depend on symmetry, the geometry of group actions, bifurcation, and Artins implicit function theorem.
Knowledge graph completion refers to predicting missing triples. Most approaches achieve this goal by predicting entities, given an entity and a relation. We predict missing triples via the relation prediction. To this end, we frame the relation pred
We consider the teacher-student setting of learning shallow neural networks with quadratic activations and planted weight matrix $W^*inmathbb{R}^{mtimes d}$, where $m$ is the width of the hidden layer and $dle m$ is the data dimension. We study the o
Estimates of the generalization error are proved for a residual neural network with $L$ random Fourier features layers $bar z_{ell+1}=bar z_ell + mathrm{Re}sum_{k=1}^Kbar b_{ell k}e^{mathrm{i}omega_{ell k}bar z_ell}+ mathrm{Re}sum_{k=1}^Kbar c_{ell
When equipped with efficient optimization algorithms, the over-parameterized neural networks have demonstrated high level of performance even though the loss function is non-convex and non-smooth. While many works have been focusing on understanding
Motivated by questions originating from the study of a class of shallow student-teacher neural networks, methods are developed for the analysis of spurious minima in classes of gradient equivariant dynamics related to neural nets. In the symmetric ca