ﻻ يوجد ملخص باللغة العربية
Motivated by questions originating from the study of a class of shallow student-teacher neural networks, methods are developed for the analysis of spurious minima in classes of gradient equivariant dynamics related to neural nets. In the symmetric case, methods depend on the generic equivariant bifurcation theory of irreducible representations of the symmetric group on $n$ symbols, $S_n$; in particular, the standard representation of $S_n$. It is shown that spurious minima do not arise from spontaneous symmetry breaking but rather through a complex deformation of the landscape geometry that can be encoded by a generic $S_n$-equivariant bifurcation. We describe minimal models for forced symmetry breaking that give a lower bound on the dynamic complexity involved in the creation of spurious minima when there is no symmetry. Results on generic bifurcation when there are quadratic equivariants are also proved; this work extends and clarifies results of Ihrig & Golubitsky and Chossat, Lauterback & Melbourne on the instability of solutions when there are quadratic equivariants.
We consider the optimization problem associated with fitting two-layer ReLU networks with $k$ hidden neurons, where labels are assumed to be generated by a (teacher) neural network. We leverage the rich symmetry exhibited by such models to identify v
In this paper we give a Casimir Invariant for the Symmetric group $S_n$. Furthermore we obtain and present, for the first time in the literature, explicit formulas for the matrices of the standard representation in terms of the matrices of the permutation representation.
Estimation of parameters in differential equation models can be achieved by applying learning algorithms to quantitative time-series data. However, sometimes it is only possible to measure qualitative changes of a system in response to a controlled c
Symmetries and equivariance are fundamental to the generalization of neural networks on domains such as images, graphs, and point clouds. Existing work has primarily focused on a small number of groups, such as the translation, rotation, and permutat
Let $R=Bbbk[x_1,dots,x_n]$ be a polynomial ring over a field $Bbbk$ and let $Isubset R$ be a monomial ideal preserved by the natural action of the symmetric group $mathfrak S_n$ on $R$. We give a combinatorial method to determine the $mathfrak S_n$-m