ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dynamical View on Optimization Algorithms of Overparameterized Neural Networks

467   0   0.0 ( 0 )
 نشر من قبل Zhiqi Bu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

When equipped with efficient optimization algorithms, the over-parameterized neural networks have demonstrated high level of performance even though the loss function is non-convex and non-smooth. While many works have been focusing on understanding the loss dynamics by training neural networks with the gradient descent (GD), in this work, we consider a broad class of optimization algorithms that are commonly used in practice. For example, we show from a dynamical system perspective that the Heavy Ball (HB) method can converge to global minimum on mean squared error (MSE) at a linear rate (similar to GD); however, the Nesterov accelerated gradient descent (NAG) may only converges to global minimum sublinearly. Our results rely on the connection between neural tangent kernel (NTK) and finite over-parameterized neural networks with ReLU activation, which leads to analyzing the limiting ordinary differential equations (ODE) for optimization algorithms. We show that, optimizing the non-convex loss over the weights corresponds to optimizing some strongly convex loss over the prediction error. As a consequence, we can leverage the classical convex optimization theory to understand the convergence behavior of neural networks. We believe our approach can also be extended to other optimization algorithms and network architectures.



قيم البحث

اقرأ أيضاً

We study the optimization problem associated with fitting two-layer ReLU neural networks with respect to the squared loss, where labels are generated by a target network. We make use of the rich symmetry structure to develop a novel set of tools for studying families of spurious minima. In contrast to existing approaches which operate in limiting regimes, our technique directly addresses the nonconvex loss landscape for a finite number of inputs $d$ and neurons $k$, and provides analytic, rather than heuristic, information. In particular, we derive analytic estimates for the loss at different minima, and prove that modulo $O(d^{-1/2})$-terms the Hessian spectrum concentrates near small positive constants, with the exception of $Theta(d)$ eigenvalues which grow linearly with~$d$. We further show that the Hessian spectrum at global and spurious minima coincide to $O(d^{-1/2})$-order, thus challenging our ability to argue about statistical generalization through local curvature. Lastly, our technique provides the exact emph{fractional} dimensionality at which families of critical points turn from saddles into spurious minima. This makes possible the study of the creation and the annihilation of spurious minima using powerful tools from equivariant bifurcation theory.
We study how permutation symmetries in overparameterized multi-layer neural networks generate `symmetry-induced critical points. Assuming a network with $ L $ layers of minimal widths $ r_1^*, ldots, r_{L-1}^* $ reaches a zero-loss minimum at $ r_1^* ! cdots r_{L-1}^*! $ isolated points that are permutations of one another, we show that adding one extra neuron to each layer is sufficient to connect all these previously discrete minima into a single manifold. For a two-layer overparameterized network of width $ r^*+ h =: m $ we explicitly describe the manifold of global minima: it consists of $ T(r^*, m) $ affine subspaces of dimension at least $ h $ that are connected to one another. For a network of width $m$, we identify the number $G(r,m)$ of affine subspaces containing only symmetry-induced critical points that are related to the critical points of a smaller network of width $r<r^*$. Via a combinatorial analysis, we derive closed-form formulas for $ T $ and $ G $ and show that the number of symmetry-induced critical subspaces dominates the number of affine subspaces forming the global minima manifold in the mildly overparameterized regime (small $ h $) and vice versa in the vastly overparameterized regime ($h gg r^*$). Our results provide new insights into the minimization of the non-convex loss function of overparameterized neural networks.
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesnt the trained network overfit when it is overparameterized? In this work, we prove that overparamete rized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network. On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
137 - Tianle Cai , Ruiqi Gao , Jikai Hou 2019
First-order methods such as stochastic gradient descent (SGD) are currently the standard algorithm for training deep neural networks. Second-order methods, despite their better convergence rate, are rarely used in practice due to the prohibitive comp utational cost in calculating the second-order information. In this paper, we propose a novel Gram-Gauss-Newton (GGN) algorithm to train deep neural networks for regression problems with square loss. Our method draws inspiration from the connection between neural network optimization and kernel regression of neural tangent kernel (NTK). Different from typical second-order methods that have heavy computational cost in each iteration, GGN only has minor overhead compared to first-order methods such as SGD. We also give theoretical results to show that for sufficiently wide neural networks, the convergence rate of GGN is emph{quadratic}. Furthermore, we provide convergence guarantee for mini-batch GGN algorithm, which is, to our knowledge, the first convergence result for the mini-batch version of a second-order method on overparameterized neural networks. Preliminary experiments on regression tasks demonstrate that for training standard networks, our GGN algorithm converges much faster and achieves better performance than SGD.
The training of two-layer neural networks with nonlinear activation functions is an important non-convex optimization problem with numerous applications and promising performance in layerwise deep learning. In this paper, we develop exact convex opti mization formulations for two-layer neural networks with second degree polynomial activations based on semidefinite programming. Remarkably, we show that semidefinite lifting is always exact and therefore computational complexity for global optimization is polynomial in the input dimension and sample size for all input data. The developed convex formulations are proven to achieve the same global optimal solution set as their non-convex counterparts. More specifically, the globally optimal two-layer neural network with polynomial activations can be found by solving a semidefinite program (SDP) and decomposing the solution using a procedure we call Neural Decomposition. Moreover, the choice of regularizers plays a crucial role in the computational tractability of neural network training. We show that the standard weight decay regularization formulation is NP-hard, whereas other simple convex penalties render the problem tractable in polynomial time via convex programming. We extend the results beyond the fully connected architecture to different neural network architectures including networks with vector outputs and convolutional architectures with pooling. We provide extensive numerical simulations showing that the standard backpropagation approach often fails to achieve the global optimum of the training loss. The proposed approach is significantly faster to obtain better test accuracy compared to the standard backpropagation procedure.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا